This paper establishes a simplified test system for internal combustion wave rotor with a single channel and designs different intensifying combustion obstacles and arrangements. Moreover, this paper analyzes the inte...This paper establishes a simplified test system for internal combustion wave rotor with a single channel and designs different intensifying combustion obstacles and arrangements. Moreover, this paper analyzes the intensifying effect of obstacles on combustion process of the internal combustion wave rotor from the stable operation range, pressure gain and flame progression process perspective. The results show that the range of inlet velocity under stable operation of the internal combustion wave rotor narrows after the addition of obstacles, and the corresponding velocity values substantially reduce while the flame propagation speed can be improved by 2 - 4 times. At the rotation rate of 1500 rpm, the pressure gain increases significantly during the combustion process. These results provide technical supports for further research and application of the internal combustion wave rotor.展开更多
文摘This paper establishes a simplified test system for internal combustion wave rotor with a single channel and designs different intensifying combustion obstacles and arrangements. Moreover, this paper analyzes the intensifying effect of obstacles on combustion process of the internal combustion wave rotor from the stable operation range, pressure gain and flame progression process perspective. The results show that the range of inlet velocity under stable operation of the internal combustion wave rotor narrows after the addition of obstacles, and the corresponding velocity values substantially reduce while the flame propagation speed can be improved by 2 - 4 times. At the rotation rate of 1500 rpm, the pressure gain increases significantly during the combustion process. These results provide technical supports for further research and application of the internal combustion wave rotor.