期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural requirements and interaction mechanisms of ACE inhibitory peptides:molecular simulation and thermodynamics studies on LAPYK and its modifi ed peptides 被引量:5
1
作者 Biying Zhang Jingbo Liu +3 位作者 Hedi Wen Feng Jiang erlei wang Ting Zhang 《Food Science and Human Wellness》 SCIE 2022年第6期1623-1630,共8页
The understanding of the structural requirements and the intermolecular-interaction mechanism are important for discovering potent angiotensin-converting enzyme(ACE)inhibitory peptides.In this study,we modifi ed an eg... The understanding of the structural requirements and the intermolecular-interaction mechanism are important for discovering potent angiotensin-converting enzyme(ACE)inhibitory peptides.In this study,we modifi ed an egg-white derived peptide,LAPYK,using the amino acids with different properties to produce the LAPYK-modified peptides.The ACE inhibitory activities of the modified peptides were determined to explore the structural requirements of ACE inhibitory peptides(ACEIPs).Molecular simulation and isothermal titration calorimetry analysis were used to investigate interactions between the peptides and ACE.We found that hydrophobicity and the amino acids with ring structures were benefi cial for the ACE inhibitory activities of the peptides.The results of the molecular mechanics poisson boltzmann surface area(MMPBSA)binding free energy calculations indicated that the polar solvation free energy(ΔG_(polar))of the charged peptides(LAPYK,LAPYE)were unfavorable for binding to ACE.On the other hand,the results of isothermal titration calorimetry analyses suggested that the enthalpy-driven ACE-peptide interactions were more favorable than the entropy-driven ACE-peptide interaction counterparts. 展开更多
关键词 ACE inhibitory peptides Molecular docking Molecular dynamics simulation Isothermal titration calorimetry
下载PDF
Fiber guiding at the Dirac frequency beyond photonic bandgaps 被引量:2
2
作者 Kang Xie Wei Zhang +10 位作者 Allan D Boardman Haiming Jiang Zhijia Hu Yong Liu Ming Xie Qiuping Mao Lei Hu Qian Li Tianyu Yang Fei Wen erlei wang 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期322-329,共8页
Light trapping within waveguides is a key practice of modern optics,both scientifically and technologically.Photonic crystal fibers traditionally rely on total internal reflection(index-guiding fibers)or a photonic ba... Light trapping within waveguides is a key practice of modern optics,both scientifically and technologically.Photonic crystal fibers traditionally rely on total internal reflection(index-guiding fibers)or a photonic bandgap(photonic-bandgap fibers)to achieve field confinement.Here,we report the discovery of a new light trapping within fibers by the so-called Dirac point of photonic band structures.Our analysis reveals that the Dirac point can establish suppression of radiation losses and consequently a novel guided mode for propagation in photonic crystal fibers.What is known as the Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation.We find the unexpected phenomenon of wave localization at this point beyond photonic bandgaps.This guiding relies on the Dirac point rather than total internal reflection or photonic bandgaps,thus providing a sort of advancement in conceptual understanding over the traditional fiber guiding.The result presented here demonstrates the discovery of a new type of photonic crystal fibers,with unique characteristics that could lead to new applications in fiber sensors and lasers.The Dirac equation is a special symbol of relativistic quantum mechanics.Because of the similarity between band structures of a solid and a photonic crystal,the discovery of the Dirac-point-induced wave trapping in photonic crystals could provide novel insights into many relativistic quantum effects of the transport phenomena of photons,phonons,and electrons. 展开更多
关键词 band structure Dirac equation optical fiber optical mode photonic crystal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部