期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry
1
作者 Liwang Wang Hualin Wang +2 位作者 Liang Ma Zhanghuang Yang erwen chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期435-446,共12页
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l... In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient. 展开更多
关键词 Wet dechlorination HCL Tail gas Gas cyclone-liquid jet absorption SEPARATOR Titanium dioxide industry
下载PDF
Numerical simulation and experimental study of gas cyclone–liquid jet separator for fine particle separation
2
作者 Liwang Wang erwen chen +5 位作者 Liang Ma Zhanghuang Yang Zongzhe Li Weihui Yang Hualin Wang Yulong Chang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期43-52,共10页
To address the shortcomings of existing particulate matter trapping technology,especially the low separation efficiency of fine particles,herein,a novel gas cyclone-liquid jet separator was developed to research fine ... To address the shortcomings of existing particulate matter trapping technology,especially the low separation efficiency of fine particles,herein,a novel gas cyclone-liquid jet separator was developed to research fine particle trapping.First,numerical simulation methods were used to investigate the flow field characteristics and dust removal efficiency of the separator under different working conditions,and to determined suitable experimental conditions for subsequent dust removal experiments.Afterward,the separation efficiency of the separator against five kinds of common particles,including g-C_(3)N_(4),TiO_(2),SiC,talc,and SiO_(2),was experimentally studied.A maximum separation efficiency of 99.48%was achieved for particles larger than 13.1μm,and 96.55%efficiency was achieved for particles larger than 2μm.The best crushing atomization effect was achieved for the separator when uGwas 10 m·s^(-1)and uLwas 3 m·s^(-1),while the best separation effect was achieved when uGwas 10 m·s^(-1)and uLwas 3.75 m·s^(-1).Studies have shown that the gas cyclone-liquid jet separator has excellent applicability in the separation of fine particles. 展开更多
关键词 Gas cyclone-liquid jet Dust removal Fine particles Numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部