Van der Waals magnet VI_(3) demonstrates intriguing magnetic properties that render it great for use in various applications.However,its microscopic magnetic structure has not been determined yet.Here,we report neutro...Van der Waals magnet VI_(3) demonstrates intriguing magnetic properties that render it great for use in various applications.However,its microscopic magnetic structure has not been determined yet.Here,we report neutron diffraction and susceptibility measurements in VI_(3) that revealed a ferromagnetic order with the moment direction tilted from the c-axis by ~36° at 4 K.A spin reorientation accompanied by a structure distortion within the honeycomb plane is observed,before the magnetic order completely disappears at TC=50 K.The refined magnetic moment of ~1.3μB at 4 K is much lower than the fully ordered spin moment of 2μB/V^(3+),suggesting the presence of a considerable orbital moment antiparallel to the spin moment and strong spin-orbit coupling in VI_(3).This results in strong magnetoelastic interactions that make the magnetic properties of VI_(3) easily tunable via strain and pressure.展开更多
基金Supported by the Innovation Program of Shanghai Municipal Education Commission(Grant No.2017-01-07-00-07-E00018)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)+1 种基金the National Natural Science Foundation of China(Grant No.11874119)the support of U.S.DOE BES Early Career Award No.KC0402020 under Contract No.DE-AC05-00OR22725。
文摘Van der Waals magnet VI_(3) demonstrates intriguing magnetic properties that render it great for use in various applications.However,its microscopic magnetic structure has not been determined yet.Here,we report neutron diffraction and susceptibility measurements in VI_(3) that revealed a ferromagnetic order with the moment direction tilted from the c-axis by ~36° at 4 K.A spin reorientation accompanied by a structure distortion within the honeycomb plane is observed,before the magnetic order completely disappears at TC=50 K.The refined magnetic moment of ~1.3μB at 4 K is much lower than the fully ordered spin moment of 2μB/V^(3+),suggesting the presence of a considerable orbital moment antiparallel to the spin moment and strong spin-orbit coupling in VI_(3).This results in strong magnetoelastic interactions that make the magnetic properties of VI_(3) easily tunable via strain and pressure.