We study the behavior of orbits in two different galactic dynamical models, describing the motion in the central parts of a triaxial elliptical galaxy with a dense nucleus. Numerical experiments show that both models ...We study the behavior of orbits in two different galactic dynamical models, describing the motion in the central parts of a triaxial elliptical galaxy with a dense nucleus. Numerical experiments show that both models display regular motion together with extended chaotic regions. A detailed investigation of the properties of motion is made for the 2D and 3D Hamiltonian systems, using a number of different dynamical parameters, such as the Poincare′ surface of a section, the maximal Lyapunov Characteristic Exponent, the S(c) spectrum, the S(w) spectrum and the P (f ) indicator. The numerical calculations suggest that the properties of motion in both potentials are very similar. Our results show that one may use different kinds of gravitational potentials in order to describe the motion in triaxial galaxies while obtaining quantitatively similar results.展开更多
We study the transition from regular to chaotic motion in a prolate elliptical galaxy dynamical model with a bulge and a dense nucleus. Our numerical investigation shows that stars with angular momentum Lz less than o...We study the transition from regular to chaotic motion in a prolate elliptical galaxy dynamical model with a bulge and a dense nucleus. Our numerical investigation shows that stars with angular momentum Lz less than or equal to a critical value Lzc, moving near the galactic plane, are scattered to higher z, when reaching the central region of the galaxy, thus displaying chaotic motion. An inverse square law relationship was found to exist between the radius of the bulge and the critical value Lzc of the angular momentum. On the other hand, a linear relationship exists between the mass of the nucleus and Lzc. The numerically obtained results are explained using theoretical arguments. Our study shows that there are connections between regular or chaotic motion and the physical parameters of the system, such as the star's angular momentum and mass, the scale length of the nucleus and the radius of the bulge. The results are compared with the outcomes of previous work.展开更多
We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic o...We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases.A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion,we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator.Comparison with other,previously used,dynamical indicators,such as the Lyapunov Characteristic Exponent or the P(f) spectral method,shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.展开更多
We use a simple dynamical model which consists of a harmonic oscillator and a spherical com- ponent, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically sym...We use a simple dynamical model which consists of a harmonic oscillator and a spherical com- ponent, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system in- fluence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional xl orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings. We also compare our results with previous related work.展开更多
文摘We study the behavior of orbits in two different galactic dynamical models, describing the motion in the central parts of a triaxial elliptical galaxy with a dense nucleus. Numerical experiments show that both models display regular motion together with extended chaotic regions. A detailed investigation of the properties of motion is made for the 2D and 3D Hamiltonian systems, using a number of different dynamical parameters, such as the Poincare′ surface of a section, the maximal Lyapunov Characteristic Exponent, the S(c) spectrum, the S(w) spectrum and the P (f ) indicator. The numerical calculations suggest that the properties of motion in both potentials are very similar. Our results show that one may use different kinds of gravitational potentials in order to describe the motion in triaxial galaxies while obtaining quantitatively similar results.
文摘We study the transition from regular to chaotic motion in a prolate elliptical galaxy dynamical model with a bulge and a dense nucleus. Our numerical investigation shows that stars with angular momentum Lz less than or equal to a critical value Lzc, moving near the galactic plane, are scattered to higher z, when reaching the central region of the galaxy, thus displaying chaotic motion. An inverse square law relationship was found to exist between the radius of the bulge and the critical value Lzc of the angular momentum. On the other hand, a linear relationship exists between the mass of the nucleus and Lzc. The numerically obtained results are explained using theoretical arguments. Our study shows that there are connections between regular or chaotic motion and the physical parameters of the system, such as the star's angular momentum and mass, the scale length of the nucleus and the radius of the bulge. The results are compared with the outcomes of previous work.
文摘We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases.A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion,we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator.Comparison with other,previously used,dynamical indicators,such as the Lyapunov Characteristic Exponent or the P(f) spectral method,shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.
文摘We use a simple dynamical model which consists of a harmonic oscillator and a spherical com- ponent, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system in- fluence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional xl orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings. We also compare our results with previous related work.