This article contains information on principle of operation, technical parameters and possible application of Orbita apparatus for hemodynamic, fibrinolytic and peripheral perfusion disorders treatment. A single expos...This article contains information on principle of operation, technical parameters and possible application of Orbita apparatus for hemodynamic, fibrinolytic and peripheral perfusion disorders treatment. A single exposure to terahertz waves emitted by Orbita apparatus, corresponding to frequencies of molecular absorption and emission spectra of atmospheric oxygen (129.0 GHz), completely cures coagulant and fibrinolytic disorders of animals with acute immobilization stress. A course of treatment with electromagnetic waves corresponding to frequencies of molecular absorption and emission spectra of nitrogen oxide (150.176 - 150.664) leads to normalization of disrupted peripheral tissue perfusion parameters of animal undergoing treatment and stimulates basal and induced output of nitrogen oxide. This leads to decrease in peripheral vascular resistance to microcirculation and increase in blood flow to microvasculature. Experimental data provided in this article serves as a proof of viability of Orbita apparatus for treatment of coagulant, fibrinolytic and tissue perfusion disorders.展开更多
文摘This article contains information on principle of operation, technical parameters and possible application of Orbita apparatus for hemodynamic, fibrinolytic and peripheral perfusion disorders treatment. A single exposure to terahertz waves emitted by Orbita apparatus, corresponding to frequencies of molecular absorption and emission spectra of atmospheric oxygen (129.0 GHz), completely cures coagulant and fibrinolytic disorders of animals with acute immobilization stress. A course of treatment with electromagnetic waves corresponding to frequencies of molecular absorption and emission spectra of nitrogen oxide (150.176 - 150.664) leads to normalization of disrupted peripheral tissue perfusion parameters of animal undergoing treatment and stimulates basal and induced output of nitrogen oxide. This leads to decrease in peripheral vascular resistance to microcirculation and increase in blood flow to microvasculature. Experimental data provided in this article serves as a proof of viability of Orbita apparatus for treatment of coagulant, fibrinolytic and tissue perfusion disorders.