期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seasonal dynamics of iron and phosphorus in reservoir sediments in Eucalyptus plantation region 被引量:1
1
作者 eyram norgbey Yiping Li +3 位作者 Ya Zhu Amechi S.Nwankwegu Robert Bofah-Buah Linda Nuamah 《Ecological Processes》 SCIE EI 2021年第1期142-156,共15页
Background:Iron(Fe)and phosphorus(P)dynamics in sediments have direct and indirect impacts on water quality.However,the mobility of P and Fe in reservoir sediments in Eucalyptus plantation region remains unclear.This ... Background:Iron(Fe)and phosphorus(P)dynamics in sediments have direct and indirect impacts on water quality.However,the mobility of P and Fe in reservoir sediments in Eucalyptus plantation region remains unclear.This study examined P and Fe pollution in sediments in a Eucalyptus plantation region using the novel planar optode,the ZrO-Chelex DGT,and the DIFS model.Results:Direct in situ investigations showed that the levels of labile P and Fe were smaller in the Eucalyptus species-dominated sediments(X2)compared to sediments without Eucalyptus species(X1).The mean concentration of labile P and Fe decreased by 25%and 42%from X1 to X2.The decrement was insignificant(p=0.20)in the surface sediment concentration for labile P.The significant disparity for DGT-Fe(Fe^(2+))(p=0.03)observed in the surface sediments could be attributed to the Eucalyptus species’elevated organic matter(tannins)concentration at X2,which reacted and consumed labile Fe.For both regions,the maximum concentration of labile P and Fe occurred in November(autumn).The reductive decomposition of Fe/Mn oxides was recognized as the main driver for their high P efflux in July and November.Low concentration of labile P and Fe was observed in December(winter)due to the adsorption of Fe/Mn oxides.The concentration of labile Fe synchronizes uniformly with that of labile P in both sediments indicating the existence of a coupling relationship(r>0.8,p<0.01)in both regions.The positive diffusion fluxes in both regions suggested that the sediments release labile P and Fe.The fluxes of labile P and Fe in both regions were substantially higher(p<0.05)in the summer(anoxic period)than winter(aerobic period),indicating that hypoxia and redox conditions influenced the seasonal efflux of labile P and Fe.From the DIFS model,the replenishment ability of reactive P was higher during the anoxic period(R=0.7,k_(1)=79.4 day^(-1),k_(-1)=0.2 day^(-1))than the aerobic period(R=0.4,k_(1)=14.2 day^(-1),k_(-1)=0.1 day^(-1)),suggesting that oxygen inhibited the efflux of P in the sediments.Conclusion:Our results indicated that hypoxia,Eucalyptus species(organic matter(tannins)),and redox conditions influenced the seasonal mobility of sediment labile P and Fe.Our findings provided an insight into the mobility of labile P and Fe in Eucalyptus-dominated sediments and,moreover,serves as a reference for developing future studies on Eucalyptus-dominated sediments. 展开更多
关键词 Water-sediment boundary Diffusive gradient in thin films(DGT) Planar optode Synchronous efflux Diffusive flux HYPOXIA
原文传递
Elevated atmospheric CO_(2) impact on carbon and nitrogen transformations and microbial community in replicated wetland 被引量:1
2
作者 Dawei Jiang Lifei Chen +3 位作者 Nan Xia eyram norgbey Desmond Ato Koomson Williams Kweku Darkwah 《Ecological Processes》 SCIE EI 2020年第1期677-688,共12页
Background:Elevated atmospheric CO_(2) has direct and indirect influences on ecosystem processes.The impact of elevated atmospheric CO_(2) concentration on carbon and nitrogen transformations,together with the microbi... Background:Elevated atmospheric CO_(2) has direct and indirect influences on ecosystem processes.The impact of elevated atmospheric CO_(2) concentration on carbon and nitrogen transformations,together with the microbial community,was evaluated with water hyacinth(Eichhornia crassipes)in an open-top chamber replicated wetland.The responses of nitrogen and carbon pools in water and wetland soil,and microbial community abundance were studied under ambient CO_(2) and elevated CO_(2)(ambient+200μL L^(−1)).Results:Total biomass for the whole plant under elevated CO_(2) increased by an average of 8%(p=0.022).Wetlands,with water hyacinth,showed a significant increase in total carbon and total organic carbon in water by 7%(p=0.001)and 21%(p=0.001),respectively,under elevated CO_(2) compared to that of ambient CO_(2).Increase in dissolved carbon in water correlates with the presence of wetland plants since the water hyacinth can directly exchange CO_(2) from the atmosphere to water by the upper epidermis of leaves.Also,the enrichment CO_(2) showed an increase in total carbon and total organic carbon concentration in wetland soil by 3%(p=0.344)and 6%(p=0.008),respectively.The total nitrogen content in water increased by 26%(p=0.0001),while total nitrogen in wetland soil pool under CO_(2) enrichment decreased by 9%(p=0.011)due to increased soil microbial community abundance,extracted by phospholipid fatty acids,which was 25%larger in amount than that of the ambient treatment.Conclusion:The study revealed that the elevated CO_(2) would affect the carbon and nitrogen transformations in wetland plant,water,and soil pool and increase soil microbial community abundance. 展开更多
关键词 Elevated CO_(2) Carbon transformation Nitrogen transformation Microbial community abundance Phospholipid fatty acids Open-top chamber
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部