In this paper, we propose a novel prevention strategy to alert citizens when water is contaminated by estro-gen. Epidemiological studies have shown that chronic exposure to high blood level of estrogen is associated w...In this paper, we propose a novel prevention strategy to alert citizens when water is contaminated by estro-gen. Epidemiological studies have shown that chronic exposure to high blood level of estrogen is associated with the development of breast cancer. The preventive strategy proposed in this paper is based on the predic-tion of estrogen effects on human living cells. Based on first principle insights, we develop in this work, a mathematical model for this prediction purpose. Dynamic measurements of cell proliferation response to es-trogen stimulation were continuously monitored by a real-time cell electronic sensor (RT-CES) and used in order to estimate the parameters of the model developed.展开更多
文摘In this paper, we propose a novel prevention strategy to alert citizens when water is contaminated by estro-gen. Epidemiological studies have shown that chronic exposure to high blood level of estrogen is associated with the development of breast cancer. The preventive strategy proposed in this paper is based on the predic-tion of estrogen effects on human living cells. Based on first principle insights, we develop in this work, a mathematical model for this prediction purpose. Dynamic measurements of cell proliferation response to es-trogen stimulation were continuously monitored by a real-time cell electronic sensor (RT-CES) and used in order to estimate the parameters of the model developed.