In the present study we analyzed the average and extreme temperatures observed and simulated by regional models in the State of Jalisco, Mexico. Data of daily mean, minimum and maximum temperatures of 208 stations dis...In the present study we analyzed the average and extreme temperatures observed and simulated by regional models in the State of Jalisco, Mexico. Data of daily mean, minimum and maximum temperatures of 208 stations distributed all over the State during the period 1971-2000 have been used to study the observed changes in the values of average and extreme temperatures. In addition, an assessment of future scenarios for the average and extreme temperatures associated with the increase in the concentration of greenhouse gases (GHG) was performed using simulations of a PRECIS (Providing Regional Climate for Impact Studies) regional climate modeling to create the climate for present (1971-2000), and future projections for the years 2020, 2050 and 2080. Observational analysis of the 208 stations suggests warming through increased intensity and frequency of hot events, with a decrease in the frequency of cold events. More than 35% to 76% of the stations have a tendency to a decrease in the number of cold events and 39% to 64% of the stations show a growing trend in the hot events. The percentage of stations showing warming through the indices of intensity of the highest maximums, lowest minimum temperatures is 37% to 70% and 30% to 65% of the stations, respectively. Observational analysis for the State of Jalisco as a whole also shows similar results. Anomalies in the average and extreme temperatures per month during the data period show an increase (decrease) in the frequency of hot (cold) events for every month. In general, PRECIS simulations under both scenarios A1B and A2 indicate an increase in warm events and decrease of cold extreme events towards the end of the 21st century. Both show similar patterns, but the scenario A2 shows slightly lower magnitudes of projected changes. Temperatures are likely to increase all year, but it is expected that changes in summer will be more prominent.展开更多
文摘In the present study we analyzed the average and extreme temperatures observed and simulated by regional models in the State of Jalisco, Mexico. Data of daily mean, minimum and maximum temperatures of 208 stations distributed all over the State during the period 1971-2000 have been used to study the observed changes in the values of average and extreme temperatures. In addition, an assessment of future scenarios for the average and extreme temperatures associated with the increase in the concentration of greenhouse gases (GHG) was performed using simulations of a PRECIS (Providing Regional Climate for Impact Studies) regional climate modeling to create the climate for present (1971-2000), and future projections for the years 2020, 2050 and 2080. Observational analysis of the 208 stations suggests warming through increased intensity and frequency of hot events, with a decrease in the frequency of cold events. More than 35% to 76% of the stations have a tendency to a decrease in the number of cold events and 39% to 64% of the stations show a growing trend in the hot events. The percentage of stations showing warming through the indices of intensity of the highest maximums, lowest minimum temperatures is 37% to 70% and 30% to 65% of the stations, respectively. Observational analysis for the State of Jalisco as a whole also shows similar results. Anomalies in the average and extreme temperatures per month during the data period show an increase (decrease) in the frequency of hot (cold) events for every month. In general, PRECIS simulations under both scenarios A1B and A2 indicate an increase in warm events and decrease of cold extreme events towards the end of the 21st century. Both show similar patterns, but the scenario A2 shows slightly lower magnitudes of projected changes. Temperatures are likely to increase all year, but it is expected that changes in summer will be more prominent.