The peristaltic transport of a magnetohydrodynamic (MHD) fluid is exam- ined for both symmetric and asymmetric channels. Hall and ion slip effects are taken into account. The heat transfer is analyzed by considering...The peristaltic transport of a magnetohydrodynamic (MHD) fluid is exam- ined for both symmetric and asymmetric channels. Hall and ion slip effects are taken into account. The heat transfer is analyzed by considering the effects of viscous and Ohmic dissipations. The relevant flow problems are first modeled, and then the closed form solutions are constructed under the assumptions of long wavelength and low Reynolds number. The solutions are analyzed through graphical illustration. It is noted that the velocity increases but the temperature decreases with the increases in the Hall and ion slip parameters. The axial pressure gradient is less in magnitude in the presence of Hall and ion slip currents. The Hall and ion slip effects are to decrease the maximum pres- sure against which peristalsis works as a pump. The free pumping flux decreases with the increases in the Hall and ion slip parameters. The increases in the Hall and ion slip parameters result in an increase in the size of the trapped bolus.展开更多
文摘The peristaltic transport of a magnetohydrodynamic (MHD) fluid is exam- ined for both symmetric and asymmetric channels. Hall and ion slip effects are taken into account. The heat transfer is analyzed by considering the effects of viscous and Ohmic dissipations. The relevant flow problems are first modeled, and then the closed form solutions are constructed under the assumptions of long wavelength and low Reynolds number. The solutions are analyzed through graphical illustration. It is noted that the velocity increases but the temperature decreases with the increases in the Hall and ion slip parameters. The axial pressure gradient is less in magnitude in the presence of Hall and ion slip currents. The Hall and ion slip effects are to decrease the maximum pres- sure against which peristalsis works as a pump. The free pumping flux decreases with the increases in the Hall and ion slip parameters. The increases in the Hall and ion slip parameters result in an increase in the size of the trapped bolus.