It is well known that every prime ideal minimal over a z-ideal is also a z-ideal. The converse is also well known in C(X). Thus whenever I is an ideal in C(X), then √I is a z-ideal if and only if I is, in which c...It is well known that every prime ideal minimal over a z-ideal is also a z-ideal. The converse is also well known in C(X). Thus whenever I is an ideal in C(X), then √I is a z-ideal if and only if I is, in which case √I = I. We show the same fact for z^-ideals and then it turns out that the sum of a primary ideal and a z-ideal (z^o-ideal) in C(X) which are not in a chain is a prime z-ideal (z^o-ideal). We also show that every decomposable z-ideal (z^o-ideal) in C(X) is the intersection of a finite number of prime z-ideals (z^o-ideal). Some counter-examples in general rings and some characterizations for the largest (smallest) z-ideal and z^o-ideal contained in (containing) an ideal are given.展开更多
基金Institute for Studies in Theoretical Physics and Mathematics(IPM),Tehran
文摘It is well known that every prime ideal minimal over a z-ideal is also a z-ideal. The converse is also well known in C(X). Thus whenever I is an ideal in C(X), then √I is a z-ideal if and only if I is, in which case √I = I. We show the same fact for z^-ideals and then it turns out that the sum of a primary ideal and a z-ideal (z^o-ideal) in C(X) which are not in a chain is a prime z-ideal (z^o-ideal). We also show that every decomposable z-ideal (z^o-ideal) in C(X) is the intersection of a finite number of prime z-ideals (z^o-ideal). Some counter-examples in general rings and some characterizations for the largest (smallest) z-ideal and z^o-ideal contained in (containing) an ideal are given.