期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
应用高光谱遥感数据估算土壤表层水分的研究(英文) 被引量:21
1
作者 刘伟东 f.baret +2 位作者 张兵 郑兰芬 童庆禧 《遥感学报》 EI CSCD 北大核心 2004年第5期434-442,共9页
土壤水分是土壤的重要组成部分 ,它在陆地表层和大气之间的物质和能量交换方面扮演着重要角色 ,寻求快速而准确的方法估算土壤水分具有重要意义。通常 ,从可见光—近红外对土壤表层水分的估计多是建立在土壤水分与反射率的关系之上的。... 土壤水分是土壤的重要组成部分 ,它在陆地表层和大气之间的物质和能量交换方面扮演着重要角色 ,寻求快速而准确的方法估算土壤水分具有重要意义。通常 ,从可见光—近红外对土壤表层水分的估计多是建立在土壤水分与反射率的关系之上的。而在土壤水分含量不高时 ,土壤水分的增加使土壤光谱反射率在整个波长范围内降低 ,尤其在 76 0nm ,970nm ,1190nm ,14 5 0nm ,194 0nm和 2 95 0nm等水分吸收波段 ,而在土壤水分含量较高时 ,土壤水分的增加会使土壤光谱反射率在某些光谱波段升高。而土壤水分的估计往往是基于土壤水分与土壤水分吸收波段的吸收强度之间的线性关系上 ,虽然这些经验的方法对于估算某些土壤的表层水分含量是有效的 ,但这些关系应用于其它条件 (如不同种类土壤、土壤湿度变化范围很大的情况 )时却面临很多困难 ,这与土壤的光谱反射率是由土壤的组成成分 (土壤水分、有机质、氧化铁和粘土矿物等 )的含量和它们在土壤中的分布密切相关。微分技术处理“连续”的光谱是遥感中常用的数学方法 ,微分技术能部分消除低频光谱成分的影响。现在微分光谱已广泛地应用于研究植被的生物物理参数、矿物和有机质等。然而利用微分光谱对土壤水分反演的研究却鲜见报道。本文通过对实验室中多种不同类型的土壤进? 展开更多
关键词 土壤水分 高光谱 导数光谱 反射率
下载PDF
Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model:Impact of the Spatial Resolution 被引量:9
2
作者 K.Velumani R.Lopez-Lozano +4 位作者 S.Madec W.Guo J.Gillet A.Comar f.baret 《Plant Phenomics》 SCIE 2021年第1期181-196,共16页
Early-stage plant density is an essential trait that determines the fate of a genotype under given environmental conditions and management practices.The use of RGB images taken from UAVs may replace the traditional vi... Early-stage plant density is an essential trait that determines the fate of a genotype under given environmental conditions and management practices.The use of RGB images taken from UAVs may replace the traditional visual counting in fields with improved throughput,accuracy,and access to plant localization.However,high-resolution images are required to detect the small plants present at the early stages.This study explores the impact of image ground sampling distance(GSD)on the performances of maize plant detection at three-to-five leaves stage using Faster-RCNN object detection algorithm.Data collected at high resolution(GSD≈0:3 cm)over six contrasted sites were used for model training.Two additional sites with images acquired both at high and low(GSD≈0:6 cm)resolutions were used to evaluate the model performances.Results show that Faster-RCNN achieved very good plant detection and counting(rRMSE=0:08)performances when native high-resolution images are used both for training and validation.Similarly,good performances were observed(rRMSE=0:11)when the model is trained over synthetic low-resolution images obtained by downsampling the native training high-resolution images and applied to the synthetic low-resolution validation images.Conversely,poor performances are obtained when the model is trained on a given spatial resolution and applied to another spatial resolution.Training on a mix of high-and low-resolution images allows to get very good performances on the native high-resolution(rRMSE=0:06)and synthetic low-resolution(rRMSE=0:10)images.However,very low performances are still observed over the native low-resolution images(rRMSE=0:48),mainly due to the poor quality of the native low-resolution images.Finally,an advanced super resolution method based on GAN(generative adversarial network)that introduces additional textural information derived from the native high-resolution images was applied to the native low-resolution validation images.Results show some significant improvement(rRMSE=0:22)compared to bicubic upsampling approach,while still far below the performances achieved over the native high-resolution images. 展开更多
关键词 RCNN FASTER IMAGE
原文传递
Scoring Cercospora Leaf Spot on Sugar Beet:Comparison of UGV and UAV Phenotyping Systems 被引量:3
3
作者 S.Jay A.Comar +9 位作者 R.Benicio J.Beauvois D.Dutartre G.Daubige W.Li J.Labrosse S.Thomas N.Henry M.Weiss f.baret 《Plant Phenomics》 2020年第1期225-242,共18页
Selection of sugar beet(Beta vulgaris L.)cultivars that are resistant to Cercospora Leaf Spot(CLS)disease is critical to increase yield.Such selection requires an automatic,fast,and objective method to assess CLS seve... Selection of sugar beet(Beta vulgaris L.)cultivars that are resistant to Cercospora Leaf Spot(CLS)disease is critical to increase yield.Such selection requires an automatic,fast,and objective method to assess CLS severity on thousands of cultivars in the field.For this purpose,we compare the use of submillimeter scale RGB imagery acquired from an Unmanned Ground Vehicle(UGV)under active illumination and centimeter scale multispectral imagery acquired from an Unmanned Aerial Vehicle(UAV)under passive illumination.Several variables are extracted from the images(spot density and spot size for UGV,green fraction for UGV and UAV)and related to visual scores assessed by an expert.Results show that spot density and green fraction are critical variables to assess low and high CLS severities,respectively,which emphasizes the importance of having submillimeter images to early detect CLS in field conditions.Genotype sensitivity to CLS can then be accurately retrieved based on time integrals of UGV-and UAV-derived scores.While UGV shows the best estimation performance,UAV can show accurate estimates of cultivar sensitivity if the data are properly acquired.Advantages and limitations of UGV,UAV,and visual scoring methods are finally discussed in the perspective of high-throughput phenotyping. 展开更多
关键词 ILLUMINATION MILLIMETER critical
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部