Aim: To evaluate the treatment of male infertility with a strong natural antioxidant, in addition to conventional treatment. Methods: Using a double blind, randomized trial design, 30 men with infertility of ≥12 mo...Aim: To evaluate the treatment of male infertility with a strong natural antioxidant, in addition to conventional treatment. Methods: Using a double blind, randomized trial design, 30 men with infertility of ≥12 months and female partners with no demonstrable cause of infertility received conventional treatment according to the guidelines of the World Health Organization (WHO), and either a strong antioxidant Astaxanthin 16 rag/day (AstaCarox, AstaReal AB, Gustavsberg, Sweden) or placebo for 3 months. The effects of treatment on semen parameters, reactive oxygen species (ROS), zona-free hamster oocyte test, serum hormones including testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and Inhibin B, and spontaneous or intrauterine insemination (IUI)-induced pregnancies were evaluated. Results: ROS and Inhibin B decreased significantly and sperm linear velocity increased in the Astaxanthin group (n = 11), but not in the placebo group (n = 19). The results of the zona-free hamster oocyte test tended to improve in the Astaxanthin group in contrast with the placebo group, though not reaching statistical significance. The total and per cycle pregnancy rates among the placebo cases (10.5 % and 3.6 %) were lower compared with 54.5 % and 23. 1% respectively in the Astaxanthin group (P=0.028; P=0.036). Conclusion: Although the present study suggests a positive effect of Astaxanthin on sperm parameters and fertility, the results need to be confirmed in a larger trial before recommending Astaxanthin for the complementary treatment of infertile men. (Asian J Androl 2005 Sep; 7: 257-262)展开更多
文摘Aim: To evaluate the treatment of male infertility with a strong natural antioxidant, in addition to conventional treatment. Methods: Using a double blind, randomized trial design, 30 men with infertility of ≥12 months and female partners with no demonstrable cause of infertility received conventional treatment according to the guidelines of the World Health Organization (WHO), and either a strong antioxidant Astaxanthin 16 rag/day (AstaCarox, AstaReal AB, Gustavsberg, Sweden) or placebo for 3 months. The effects of treatment on semen parameters, reactive oxygen species (ROS), zona-free hamster oocyte test, serum hormones including testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and Inhibin B, and spontaneous or intrauterine insemination (IUI)-induced pregnancies were evaluated. Results: ROS and Inhibin B decreased significantly and sperm linear velocity increased in the Astaxanthin group (n = 11), but not in the placebo group (n = 19). The results of the zona-free hamster oocyte test tended to improve in the Astaxanthin group in contrast with the placebo group, though not reaching statistical significance. The total and per cycle pregnancy rates among the placebo cases (10.5 % and 3.6 %) were lower compared with 54.5 % and 23. 1% respectively in the Astaxanthin group (P=0.028; P=0.036). Conclusion: Although the present study suggests a positive effect of Astaxanthin on sperm parameters and fertility, the results need to be confirmed in a larger trial before recommending Astaxanthin for the complementary treatment of infertile men. (Asian J Androl 2005 Sep; 7: 257-262)