Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion...Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.展开更多
Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for th...Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for the precursor powder and 2.5 GPa for the solid, EBM-fabricated products. The powder and solid product microstructures were examined by optical and electron microscopy. X-ray diffraction analyses showed that they had bcc β-phase microstructure. However, it was found by transmission electron microscopy that the EBM-fabricated product had plate morphology with space -100-200 nm. Although the corresponding selected area diffraction patterns can be indexed by β-phase plus α"-martensite with orthorhombic crystal structure, the dark-field analyses failed to observe the α"-martensite. Such phenomenon was also found in deformed gum metals and explained by stress-induced diffusion scattering due to phonon softening.展开更多
基金financial support from Fondecyt.R.J.Chimentao is grateful to Fondecyt 1180243Fondecyt 1161660+3 种基金the Universitat Rovira i VirgiliUniversidad de Costa Rica for the financial supportICREA Academia programGC 2017 SGR 128.
文摘Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.
基金supportcd in part by Murchison Endowed Chairs at UTEPan MOST Grant 2012CB933901 at IMR
文摘Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for the precursor powder and 2.5 GPa for the solid, EBM-fabricated products. The powder and solid product microstructures were examined by optical and electron microscopy. X-ray diffraction analyses showed that they had bcc β-phase microstructure. However, it was found by transmission electron microscopy that the EBM-fabricated product had plate morphology with space -100-200 nm. Although the corresponding selected area diffraction patterns can be indexed by β-phase plus α"-martensite with orthorhombic crystal structure, the dark-field analyses failed to observe the α"-martensite. Such phenomenon was also found in deformed gum metals and explained by stress-induced diffusion scattering due to phonon softening.