149Pm, 166Ho, 161Tb and 177Lu conjugated to chemical agents (monoclonal antibodies, polypeptide, etc.) have the appropriate decay characteristics for imaging and therapeutic studies and consequently the potential to b...149Pm, 166Ho, 161Tb and 177Lu conjugated to chemical agents (monoclonal antibodies, polypeptide, etc.) have the appropriate decay characteristics for imaging and therapeutic studies and consequently the potential to be useful in radiotherapy and diagnosis. These carrier-free radioisotopes can be produced by neutron irradiation of a lanthanide target followed by β-?decay, and a posterior radiochemical separation of the daughter radionuclide from macro-amounts of the parent target. In order to produce carrier free 149Pm, 161Tb, 166Ho and 177Lu for radiotherapy, with a radionuclide purity of more than 99.9%, a device production was developed based on separation of Nd/Pm, Gb/Tb, Dy/Ho and Yb/Lu by extraction chromatography.展开更多
基金supported by the“Consejo Nacional de Ciencia y Tecnología”grant number:CONACYTSALUD-2004-C01-001.
文摘149Pm, 166Ho, 161Tb and 177Lu conjugated to chemical agents (monoclonal antibodies, polypeptide, etc.) have the appropriate decay characteristics for imaging and therapeutic studies and consequently the potential to be useful in radiotherapy and diagnosis. These carrier-free radioisotopes can be produced by neutron irradiation of a lanthanide target followed by β-?decay, and a posterior radiochemical separation of the daughter radionuclide from macro-amounts of the parent target. In order to produce carrier free 149Pm, 161Tb, 166Ho and 177Lu for radiotherapy, with a radionuclide purity of more than 99.9%, a device production was developed based on separation of Nd/Pm, Gb/Tb, Dy/Ho and Yb/Lu by extraction chromatography.