Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely appl...Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.展开更多
Dislocation information and strain-related tetragonal distortion as well as crystalline qualities of a 2-μm-thick InN film grown by molecular beam epitaxy (MBE) are characterized by Rutherford backscattering/channeli...Dislocation information and strain-related tetragonal distortion as well as crystalline qualities of a 2-μm-thick InN film grown by molecular beam epitaxy (MBE) are characterized by Rutherford backscattering/channeling (RBS/C) and synchrotron radiation x-ray diffraction (SR-XRD).The minimum yield xmin=2.5% deduced from the RBS/C results indicates a fairly good crystalline quality.From the SR-XRD results,we obtain the values of the screw and edge densities to be ρscrew =7.0027 X 10^(9) and ρedge =8.6115 × 10^(9) cm-2,respectively.The tetragonal distortion of the sample is found to be -0.27 % by angular scans,which is close to the -0.28 % derived by SR-XRD.The value of |e(⊥)/e‖| =0.6742 implies that the InN layer is much stiffer along the a axis than that along the c axis,where e‖ is the parallel elastic strain,and e⊥ is the perpendicular elastic strain.Photoluminescence results reveal a main peak of 0.653eV with the linewidth of 60meV,additional shoulder band could be due to impurities and related defects.展开更多
Structural properties of InxGa_(1−x)N/GaN multi-quantum wells(MQWs)grown on sapphire by metal organic chemical vapor deposition are investigated by synchrotron radiation x-ray diffraction(SRXRD),Rutherford backscatter...Structural properties of InxGa_(1−x)N/GaN multi-quantum wells(MQWs)grown on sapphire by metal organic chemical vapor deposition are investigated by synchrotron radiation x-ray diffraction(SRXRD),Rutherford backscattering/channelling(RBS/C)and high-resolution transmission electron microscopy.The sample consists of eight periods of InxGa_(1−x)N/GaN wells of 2.1 nm thickness and 8.5 nm thickness of GaN barrier,and the results are very close,which verifies the accuracy of the three methods.The indium content in InxGa_(1−x)N/GaN MQWs by SRXRD and RBS/C is estimated,and results are in general the same.By RBS/C random spectra,the indium atomic lattice substitution rate is 94.0%,indicating that almost all indium atoms in InxGa_(1−x)N/GaN MQWs are at substitution,that the indium distribution of each layer in InxGa_(1−x)N/GaN MQWs is very homogeneous and that the InxGa_(1−x)N/GaN MQWs have a very good crystalline quality.It is not accurate to estimate indium content in InxGa_(1−x)N/GaN MQWs by photoluminescence(PL)spectra,because the result from the PL experimental method is very different from the results by the SRXRD and RBS/C experimental methods.展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFC1506605)Sichuan Provincial Department of Education Scientific research projects(Grant No.16ZB0211)Chengdu University of Information Technology research and development projects(Grant No.CRF201705)。
文摘Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.
基金Supported by the National Natural Science Foundation of China under Grant No 10875004the National Basic Research Program of China under Grant No 2010CB832904。
文摘Dislocation information and strain-related tetragonal distortion as well as crystalline qualities of a 2-μm-thick InN film grown by molecular beam epitaxy (MBE) are characterized by Rutherford backscattering/channeling (RBS/C) and synchrotron radiation x-ray diffraction (SR-XRD).The minimum yield xmin=2.5% deduced from the RBS/C results indicates a fairly good crystalline quality.From the SR-XRD results,we obtain the values of the screw and edge densities to be ρscrew =7.0027 X 10^(9) and ρedge =8.6115 × 10^(9) cm-2,respectively.The tetragonal distortion of the sample is found to be -0.27 % by angular scans,which is close to the -0.28 % derived by SR-XRD.The value of |e(⊥)/e‖| =0.6742 implies that the InN layer is much stiffer along the a axis than that along the c axis,where e‖ is the parallel elastic strain,and e⊥ is the perpendicular elastic strain.Photoluminescence results reveal a main peak of 0.653eV with the linewidth of 60meV,additional shoulder band could be due to impurities and related defects.
基金by the National Natural Science Foundation of China under Grant No 10875004 and 11005005the National Basic Research Program of China under Grant No 2010CB832904.
文摘Structural properties of InxGa_(1−x)N/GaN multi-quantum wells(MQWs)grown on sapphire by metal organic chemical vapor deposition are investigated by synchrotron radiation x-ray diffraction(SRXRD),Rutherford backscattering/channelling(RBS/C)and high-resolution transmission electron microscopy.The sample consists of eight periods of InxGa_(1−x)N/GaN wells of 2.1 nm thickness and 8.5 nm thickness of GaN barrier,and the results are very close,which verifies the accuracy of the three methods.The indium content in InxGa_(1−x)N/GaN MQWs by SRXRD and RBS/C is estimated,and results are in general the same.By RBS/C random spectra,the indium atomic lattice substitution rate is 94.0%,indicating that almost all indium atoms in InxGa_(1−x)N/GaN MQWs are at substitution,that the indium distribution of each layer in InxGa_(1−x)N/GaN MQWs is very homogeneous and that the InxGa_(1−x)N/GaN MQWs have a very good crystalline quality.It is not accurate to estimate indium content in InxGa_(1−x)N/GaN MQWs by photoluminescence(PL)spectra,because the result from the PL experimental method is very different from the results by the SRXRD and RBS/C experimental methods.