It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a c...It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a convenient and efficient warming structure for the piezoelectric stack is proposed in this paper to solve this problem.Based on the theoretical analysis of heat transfer,two heating modes,namely,overall heating and local heating are analyzed and compared.Moreover,experimental tests are conducted to evaluate the effectiveness of the structure.Based on the results,it can be concluded that the theoretical results are confirmed with experimental results.Besides,the temperature and performance of the piezoelectric stack are kept stable as temperature varies from 10℃to-70℃,which manifests the feasibility of the structure.Therefore,this paper could be an available reference for those engaged in cryogenic investigation of smart materials and structures.展开更多
基金supported by the National Natural Science Foundation of China(No.11872207)the Aeronautical Science Foundation of China(No.20180952007)+1 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(No.MCMS-I-0520G01)the Key Laboratory Foundation of Equipment Pre-Research(No.6142204200307)。
文摘It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a convenient and efficient warming structure for the piezoelectric stack is proposed in this paper to solve this problem.Based on the theoretical analysis of heat transfer,two heating modes,namely,overall heating and local heating are analyzed and compared.Moreover,experimental tests are conducted to evaluate the effectiveness of the structure.Based on the results,it can be concluded that the theoretical results are confirmed with experimental results.Besides,the temperature and performance of the piezoelectric stack are kept stable as temperature varies from 10℃to-70℃,which manifests the feasibility of the structure.Therefore,this paper could be an available reference for those engaged in cryogenic investigation of smart materials and structures.