This paper studies the finite-time fuzzy adaptive output feedback resilient control problem for nonlinear cyber-physical systems(CPSs) with sensor attacks and actuator faults.Fuzzy logic systems(FLSs) are used to appr...This paper studies the finite-time fuzzy adaptive output feedback resilient control problem for nonlinear cyber-physical systems(CPSs) with sensor attacks and actuator faults.Fuzzy logic systems(FLSs) are used to approximate the unknown nonlinear functions,and a fuzzy state observer is constructed to estimate the unmeasured states.By combining the Nussbaum function with the backstepping control design technique,a fuzzy adaptive resilient control scheme is designed to successfully address the effects of sensor attacks and actuator faults.It is proved that the controlled system is semi-global practical finite-time stability(SGPFS),and the tracking error converges to a small neighborhood of the origin in a finite time interval.Finally,the simulation and comparison results further demonstrate the effectiveness of the designed control method.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.62173172。
文摘This paper studies the finite-time fuzzy adaptive output feedback resilient control problem for nonlinear cyber-physical systems(CPSs) with sensor attacks and actuator faults.Fuzzy logic systems(FLSs) are used to approximate the unknown nonlinear functions,and a fuzzy state observer is constructed to estimate the unmeasured states.By combining the Nussbaum function with the backstepping control design technique,a fuzzy adaptive resilient control scheme is designed to successfully address the effects of sensor attacks and actuator faults.It is proved that the controlled system is semi-global practical finite-time stability(SGPFS),and the tracking error converges to a small neighborhood of the origin in a finite time interval.Finally,the simulation and comparison results further demonstrate the effectiveness of the designed control method.