期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
随机环境下两个上临界分支过程的参数比较
1
作者 范协铨 胡海娟 +1 位作者 吴浩 叶印娜 《数学物理学报(A辑)》 CSCD 北大核心 2023年第5期1440-1470,共31页
设(Z_(1,n))_(n≥0)和(Z_(2,n))_(n≥0)是两个在独立同分布随机环境下的上临界分支过程,并且其关键参数分别为μ1和μ2.容易知道,在适当条件下,1/nlnZ_(1,n)和1/mlnZ_(2,m)分别依概率收敛到μ1和μ2.该文旨在讨论两个上临界分支过程的... 设(Z_(1,n))_(n≥0)和(Z_(2,n))_(n≥0)是两个在独立同分布随机环境下的上临界分支过程,并且其关键参数分别为μ1和μ2.容易知道,在适当条件下,1/nlnZ_(1,n)和1/mlnZ_(2,m)分别依概率收敛到μ1和μ2.该文旨在讨论两个上临界分支过程的关键参数之差μ1−μ2的估计问题,它可以被看作是一类双样本U统计量问题.我们得到了1/nlnZ_(1,n−1/m)lnZ_(2,m)的中心极限定理,非一致性Berry-Esseen估计和Cramér型中偏差.最后,作为应用部分,指出了以上的结果可用于关键参数置信区间的构造. 展开更多
关键词 分支过程 随机环境 Berry-Esseen 估计 Cramér 型中偏差
下载PDF
Sharp large deviation results for sums of independent random variables 被引量:1
2
作者 fan xiequan GRAMA Ion LIU QuanSheng 《Science China Mathematics》 SCIE CSCD 2015年第9期1939-1958,共20页
We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certai... We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certain case; other bounds improve the inequalities of Bennett and Hoeffding by adding missing factors in the spirit of Talagrand(1995). We also complete Talagrand's inequality by giving a lower bound of the same form, leading to an equality. As a consequence, we obtain large deviation expansions similar to those of Cram′er(1938),Bahadur-Rao(1960) and Sakhanenko(1991). We also show that our bound can be used to improve a recent inequality of Pinelis(2014). 展开更多
关键词 Bernstein’s inequality sharp large deviations Cramér large deviations expansion of BahadurRao sums of independent random variabl
原文传递
Sharp large deviations for sums of bounded from above random variables
3
作者 fan xiequan 《Science China Mathematics》 SCIE CSCD 2017年第12期2465-2480,共16页
We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko... We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko(1991). In particular, our results extend Talagrand's inequality from bounded random variables to random variables having finite(2 + δ)-th moments, where δ∈(0, 1]. As a consequence,we obtain an improvement of Hoeffding's inequality. Applications to linear regression, self-normalized large deviations and t-statistic are also discussed. 展开更多
关键词 sharp large deviations Cram′er large deviations Talagrand’s inequality Hoeffding’s inequality sums of independent random variables
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部