In order to identify fractured reservoirs and determine their fracture parameters with a high definition array laterolog,we built a fracture-induced anisotropic formation model with a parallel fracture group.The three...In order to identify fractured reservoirs and determine their fracture parameters with a high definition array laterolog,we built a fracture-induced anisotropic formation model with a parallel fracture group.The three-dimensional finite element method is used to simulate the responses of the array laterolog,and then the primary inversion method is utilized.Numerical simulation shows that when the fracture spacing is small,the array laterolog response of the fracture group is the same as that of a formation with macroscopic electrical anisotropy.The apparent resistivity of the array laterolog is approximately inversely proportional to fracture porosity.The anisotropy depends on the fracture porosity in the fractured formation,which accordingly results in response variation of the array laterolog.The higher the fracture dip,the larger the apparent resistivity.When the fracture dip is low the difference between the deep and shallow apparent resistivities is small,and when the dip is high the difference turns out to be positive.The fracture parameters were inverted using the Marquardt non-linear least squares method.The results,both fracture porosity and dip show a good match with parameters in the actual formation model.This will promote the application of the array laterolog in evaluating fractured reservoirs.展开更多
Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral metho...Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.展开更多
基金supported by Shandong Natural Science Foundation(Y2007F25)Fundamental Research Funds for the Central Universities in China(09CX04001A)
文摘In order to identify fractured reservoirs and determine their fracture parameters with a high definition array laterolog,we built a fracture-induced anisotropic formation model with a parallel fracture group.The three-dimensional finite element method is used to simulate the responses of the array laterolog,and then the primary inversion method is utilized.Numerical simulation shows that when the fracture spacing is small,the array laterolog response of the fracture group is the same as that of a formation with macroscopic electrical anisotropy.The apparent resistivity of the array laterolog is approximately inversely proportional to fracture porosity.The anisotropy depends on the fracture porosity in the fractured formation,which accordingly results in response variation of the array laterolog.The higher the fracture dip,the larger the apparent resistivity.When the fracture dip is low the difference between the deep and shallow apparent resistivities is small,and when the dip is high the difference turns out to be positive.The fracture parameters were inverted using the Marquardt non-linear least squares method.The results,both fracture porosity and dip show a good match with parameters in the actual formation model.This will promote the application of the array laterolog in evaluating fractured reservoirs.
基金Supported by the National Natural Science Foundation of China(41904109,41974146)National Science and Technology Major Project(2017ZX05019-005)+2 种基金China Postdoctoral Science Foundation(2018M640663)the Shandong Province Postdoctoral Innovation Projects(sdbh20180025)National Key Laboratory of Electromagnetic Environment Projects(6142403200307)。
文摘Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.