Ultra-small Co_3O_4 nanoparticles/graphene hybrid material had been synthesized by a facile hydrothermal route and consequent calcination process.The as-obtained ultra-small Co_3O_4 nanoparticles with their sizes of ...Ultra-small Co_3O_4 nanoparticles/graphene hybrid material had been synthesized by a facile hydrothermal route and consequent calcination process.The as-obtained ultra-small Co_3O_4 nanoparticles with their sizes of 5–8 nm are tightly anchored on the surface of graphene(GNS).Benefiting from the ultra-small size of Co_3O_4 nanoparticles,the high interconnectivity of hybrid material as well as the high conductive networks constructed by GNS,which can provide a fast and efficient transportation of electron and electrolyte ions for the overall electrode,the as-prepared hybrid material exhibits a high specific capacitance of 462 F·g^(-1) at 5 m V·s^(-1) compared with pure Co_3O_4(193 F·g^(-1)),and retained 88.2% of its initial capacitance after 2000 cycles,indicating a promising electrode material for supercapacitors.展开更多
Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures w...Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures were studied. An appropriate annealing temperature was requested to transfer NiO nanosheets and Feions into NiFe2O4 nanowires. In the beginning stage of synthesizing process, the shape ofNiO nanosheets remained unchanged at low temperatures. And then, NiO nanosheets split into nanowires from 400 ℃ to 600 ℃. At last they transformed into nanoparticles from 700 ℃ to 1000 ℃. Thus, the optimized annealing temperature was selected as 600 ℃ because the NiFe2O4 obtained at 600 ℃(N600) exhibited a maximum aspect ratio of 50 with a diameter of 20 nm and a length of 1 μm. Furthermore, N600 also displayed the largest magnetization value of 26.86 A·m^2/kg and the lowest coercivity(Hc) of 8914 A/m.展开更多
基金Natural Science Foundation of Heilonjiang Province(E201416)the Natural Science Foundation of China(51672055)Ph.D.Programs Foundation of Ministry of Education of China(201223 04110020)
文摘Ultra-small Co_3O_4 nanoparticles/graphene hybrid material had been synthesized by a facile hydrothermal route and consequent calcination process.The as-obtained ultra-small Co_3O_4 nanoparticles with their sizes of 5–8 nm are tightly anchored on the surface of graphene(GNS).Benefiting from the ultra-small size of Co_3O_4 nanoparticles,the high interconnectivity of hybrid material as well as the high conductive networks constructed by GNS,which can provide a fast and efficient transportation of electron and electrolyte ions for the overall electrode,the as-prepared hybrid material exhibits a high specific capacitance of 462 F·g^(-1) at 5 m V·s^(-1) compared with pure Co_3O_4(193 F·g^(-1)),and retained 88.2% of its initial capacitance after 2000 cycles,indicating a promising electrode material for supercapacitors.
基金Supported by the National Natural Science Foundation of China(Nos.21301038, 51108111, 21203040), the Fundamental Research Funds for the Central Universities of China(No.HEUCF2015003) and the Natural Science Foundation of Heilongjiang Province of China(No.B201201).
文摘Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures were studied. An appropriate annealing temperature was requested to transfer NiO nanosheets and Feions into NiFe2O4 nanowires. In the beginning stage of synthesizing process, the shape ofNiO nanosheets remained unchanged at low temperatures. And then, NiO nanosheets split into nanowires from 400 ℃ to 600 ℃. At last they transformed into nanoparticles from 700 ℃ to 1000 ℃. Thus, the optimized annealing temperature was selected as 600 ℃ because the NiFe2O4 obtained at 600 ℃(N600) exhibited a maximum aspect ratio of 50 with a diameter of 20 nm and a length of 1 μm. Furthermore, N600 also displayed the largest magnetization value of 26.86 A·m^2/kg and the lowest coercivity(Hc) of 8914 A/m.