This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, wh...This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, which had both crevice and residual stress, mainly in 3 % NaCl solution at various temperatures to determine the critical temperature for SCC at and below which the steel would not suffer from SCC. The effects of individual alloying element of silicon, manganese and copper on SCC of 18Cr 14Ni steels which phosphor content is 0.002 % and molybdenum content is 0.01 % were examined. Addition of 1 or 2 % of copper has beneficial effect on resistance to SCC, while increasing silicon or manganese content has no significant effect. Critical temperature of the steel with 0.002 % of phosphor and 2 % of copper is 150 ℃, which is markedly higher than 50 ℃ of 304L steel. However, the beneficial effect of copper is reduced with increasing phosphor content. From practical viewpoint, the modified steel with good SCC resistance should have 0.01 %-0.015 % of phosphor and 0.3 % or more of molybdenum, because it is very difficult to reduce phosphor content below 0 008 % industrially and such molybdenum content is inevitably introduced through cost saving melting process using return steel. Aluminium is to be added as another alloying element and 3 % of aluminium combined with 2 % of copper has been found to negate the deleterious effects of increased phosphor and molybdenum content. As a candidate steel at this stage, 14Cr 16Ni 0.013P 2Cu 1Al (0.3 1)Mo steel has critical temperature of 110 ℃.展开更多
The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The rela...The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The relative content of different microstructure was evaluated with XQF 2000 micro image analyzer. The effect of acicular ferrite content on the impact toughness was also studied. The test results indicated that the main microstructure in the weld metals of HQ130+QJ63 high strength steels is acicular ferrite and a few pro eutectic ferrite on the boundary of original austenite grain. Near the fusion zone there are columnar grains whose direction coefficient (X) is 3 22, but the microstructure in the center of the weld metal is isometric grain, whose direction coefficient X=1 In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm. Thus, the main microstructure in the weld metals is fine acicular ferrite and the content of pro eutectic ferrite is limited. The impact toughness in the weld metals of HQ130+QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery.展开更多
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c...The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.展开更多
With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The r...With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.展开更多
目的探讨后外侧切口人工全髋关节置换(total hip arthroplasty,THA)术中缝合外旋肌和保留后方关节囊对髋关节功能恢复的影响。方法选取我院2013年6月至2016年1月收治的80例经后外侧切口行THA的患者,根据手术方式分为治疗组和对照组,每组...目的探讨后外侧切口人工全髋关节置换(total hip arthroplasty,THA)术中缝合外旋肌和保留后方关节囊对髋关节功能恢复的影响。方法选取我院2013年6月至2016年1月收治的80例经后外侧切口行THA的患者,根据手术方式分为治疗组和对照组,每组各40例。治疗组采用保留修复后方关节囊及外旋肌术式,对照组不给予保留修复后方关节囊。分析并比较两组术后引流量,手术时间和切口长度,血流变学指标变化;采用Harris评分对两组手术前后髋关节功能进行评价;统计两组术后并发症发生情况和肌力情况。结果治疗组术中出血量为(220.37±37.51) ml,对照组为(228.94±36.93) ml,两组相比,差异无统计学意义(P=0.063);治疗组住院时间为(15.08±1.91)天,对照组为(15.49±2.58)天,两组相比,差异无统计学意义(P=0.057);治疗组术后引流量为(113.57±45.72) ml,少于对照组(209.68±51.97) ml,且两组相比差异有统计学意义(P=0.000);两组的手术时间和切口长度相比,差异无统计学意义(P=0.057,0.802);术后6个月治疗组和对照组的全血粘度[(4.25±1.36),(4.31±1.28) mPa·s]、血浆粘度[(1.71±0.19),(2.46±0.43)mPa·s]、红细胞比容[(37.91±2.37),(38.02±2.40)%]、红细胞刚性指数[(5.60±0.84),(5.66±0.71)]均较术前下降(P=0.000),红细胞变形指数[(0.88±0.04),(0.89±0.03)]较术前上升(P=0.000),但两组相比,差异无统计学意义(P>0.05);治疗组髋关节Harris评分优良率(70%)高于对照组(45%),且两组相比差异有统计学意义(P=0.043);治疗组术后关节脱位发生率较对照组低,有效肌力较对照组高。结论经后外侧入路行THA术中修复关节囊和外旋肌群能有效降低术后关节脱位发生率,术中出血量少,有助于髋关节功能的恢复,疗效确切,值得临床推广应用。展开更多
RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The result...RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The results obtained are satisfactory.The method is a powerful aid for designing new steels.展开更多
文摘This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, which had both crevice and residual stress, mainly in 3 % NaCl solution at various temperatures to determine the critical temperature for SCC at and below which the steel would not suffer from SCC. The effects of individual alloying element of silicon, manganese and copper on SCC of 18Cr 14Ni steels which phosphor content is 0.002 % and molybdenum content is 0.01 % were examined. Addition of 1 or 2 % of copper has beneficial effect on resistance to SCC, while increasing silicon or manganese content has no significant effect. Critical temperature of the steel with 0.002 % of phosphor and 2 % of copper is 150 ℃, which is markedly higher than 50 ℃ of 304L steel. However, the beneficial effect of copper is reduced with increasing phosphor content. From practical viewpoint, the modified steel with good SCC resistance should have 0.01 %-0.015 % of phosphor and 0.3 % or more of molybdenum, because it is very difficult to reduce phosphor content below 0 008 % industrially and such molybdenum content is inevitably introduced through cost saving melting process using return steel. Aluminium is to be added as another alloying element and 3 % of aluminium combined with 2 % of copper has been found to negate the deleterious effects of increased phosphor and molybdenum content. As a candidate steel at this stage, 14Cr 16Ni 0.013P 2Cu 1Al (0.3 1)Mo steel has critical temperature of 110 ℃.
基金Sponsored by National Key Fundamental Research Development Project(G1998061513)
文摘The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The relative content of different microstructure was evaluated with XQF 2000 micro image analyzer. The effect of acicular ferrite content on the impact toughness was also studied. The test results indicated that the main microstructure in the weld metals of HQ130+QJ63 high strength steels is acicular ferrite and a few pro eutectic ferrite on the boundary of original austenite grain. Near the fusion zone there are columnar grains whose direction coefficient (X) is 3 22, but the microstructure in the center of the weld metal is isometric grain, whose direction coefficient X=1 In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm. Thus, the main microstructure in the weld metals is fine acicular ferrite and the content of pro eutectic ferrite is limited. The impact toughness in the weld metals of HQ130+QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery.
文摘The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.
基金Project Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘With TEM、SEM, various high temperature deformed structures in W9Mo3Cr4V steel were investigated. The sub structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.
文摘RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The results obtained are satisfactory.The method is a powerful aid for designing new steels.