针对星上相机运动干扰影响遥感卫星图像配准精度控制难题,研究基于磁浮控制力矩陀螺(magnetically suspended control moment gyros, MSCMG)的复合补偿控制提高图像配准精度的方法。以基于MSCMG作为执行机构,采用姿态反馈补偿控制方法,...针对星上相机运动干扰影响遥感卫星图像配准精度控制难题,研究基于磁浮控制力矩陀螺(magnetically suspended control moment gyros, MSCMG)的复合补偿控制提高图像配准精度的方法。以基于MSCMG作为执行机构,采用姿态反馈补偿控制方法,避免复杂的控制系统前馈补偿及其自身干扰,姿态稳定精度达到5.8×10-5(°)/s。在此基础上,提出了MSCMG姿态补偿控制与相机运动补偿算法一体化的复合补偿控制方法。仿真结果表明:采用一体化复合补偿控制,跟踪相机步进角精度由补偿前的6 μrad提高到补偿后的0.36 μrad,提高了一个数量级以上;扫描角精度由补偿前的0.6 μrad提高到补偿后的0.45 μrad;显著提高了相机光轴指向的稳定性;研究结果可为甚高精度遥感卫星高精度图像配准设计提供参考。展开更多
Atomic spin gyroscope (ASG) based on comagnetometer is a high sensitive and compact gyroscope for future inertial navigation applications. The start-up time was several hours of the demonstrated ASGs based on 3He-K or...Atomic spin gyroscope (ASG) based on comagnetometer is a high sensitive and compact gyroscope for future inertial navigation applications. The start-up time was several hours of the demonstrated ASGs based on 3He-K or21 Ne-Rb-K comagnetometer, and only a few inertial navigation applications allow such a long time for preparation. We report the demonstration of an ASG based on 129Xe-Cs comagnetometer, which decreases the start-up time to 10 minutes and decreases the operation temperature by 40% as well. By operating this ASG in spin exchange relaxation free regime, a sensitivity of 7×10 -5 °/(s Hz1/2) was achieved.展开更多
The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is ...The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network(ANN)inverse system and the two degrees of freedom(2-DOF) internal model controller(IMC). The HS-BLDC motor is identified by the online least squares support vector machine(OLS-SVM) algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.展开更多
Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and curren...Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors(position and attitude) of planetary rovers, the performance of the Kalman filter(KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated navigation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time relevance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter(EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.展开更多
Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems, a novel attitude determination algorithm using vecto...Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems, a novel attitude determination algorithm using vector observations and gyro measurements is presented. The various features of the unscented Kalman filter (UKF) and optimal-REQUEST (quaternion estimator) algorithms are introduced for attitude determination. An interlaced filtering method is presented for the attitude determination of nano-spacecraft by setting the quaternion as the attitude representation, using the UKF and optimal-REQUEST to estimate the gyro drifts and the quaternion, respectively. The optimal-REQUEST and UKF are not isolated from each other. When the optimal-REQUEST algorithm estimates the attitude quaternion, the gyro drifts are estimated by the UKF algorithm synchronously by using the estimated attitude quaternion. Furthermore, the speed of attitude determination is improved by setting the state dimension to three. Experimental results show that the presented method has higher performance in attitude determination compared to the UKF algorithm and the traditional interlaced filtering method and can estimate the gyro drifts quickly.展开更多
文摘针对星上相机运动干扰影响遥感卫星图像配准精度控制难题,研究基于磁浮控制力矩陀螺(magnetically suspended control moment gyros, MSCMG)的复合补偿控制提高图像配准精度的方法。以基于MSCMG作为执行机构,采用姿态反馈补偿控制方法,避免复杂的控制系统前馈补偿及其自身干扰,姿态稳定精度达到5.8×10-5(°)/s。在此基础上,提出了MSCMG姿态补偿控制与相机运动补偿算法一体化的复合补偿控制方法。仿真结果表明:采用一体化复合补偿控制,跟踪相机步进角精度由补偿前的6 μrad提高到补偿后的0.36 μrad,提高了一个数量级以上;扫描角精度由补偿前的0.6 μrad提高到补偿后的0.45 μrad;显著提高了相机光轴指向的稳定性;研究结果可为甚高精度遥感卫星高精度图像配准设计提供参考。
基金supported by the National Natural Science Foundation of China (60825305, 61121003)the National Basic Research Program of China (2009CB724002)the Defense Industrial Technology Development Program of China (B2120110002)
文摘Atomic spin gyroscope (ASG) based on comagnetometer is a high sensitive and compact gyroscope for future inertial navigation applications. The start-up time was several hours of the demonstrated ASGs based on 3He-K or21 Ne-Rb-K comagnetometer, and only a few inertial navigation applications allow such a long time for preparation. We report the demonstration of an ASG based on 129Xe-Cs comagnetometer, which decreases the start-up time to 10 minutes and decreases the operation temperature by 40% as well. By operating this ASG in spin exchange relaxation free regime, a sensitivity of 7×10 -5 °/(s Hz1/2) was achieved.
基金co-supported by the National Major Project for the Development and Application of Scientific Instrument Equipment of China (No. 2012YQ040235)
文摘The start-up current control of the high-speed brushless DC(HS-BLDC) motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network(ANN)inverse system and the two degrees of freedom(2-DOF) internal model controller(IMC). The HS-BLDC motor is identified by the online least squares support vector machine(OLS-SVM) algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.
基金supported by the National Natural Science Foundation of China (Nos. 61233005 and 61503013)the National Basic Research Program of China (No. 2014CB744202)+2 种基金Beijing Youth Talent ProgramFundamental Science on Novel Inertial Instrument & Navigation System Technology LaboratoryProgram for Changjiang Scholars and Innovative Research Team in University (IRT1203) for their valuable comments
文摘Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors(position and attitude) of planetary rovers, the performance of the Kalman filter(KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated navigation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time relevance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter(EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.
基金co-supported by the National Natural Science Foundation of China (Nos. 61004140, 61004129, 60825305, 61104198, 60904093)National Basic Research Program of China (No. 2009CB7240 0101C)
文摘Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems, a novel attitude determination algorithm using vector observations and gyro measurements is presented. The various features of the unscented Kalman filter (UKF) and optimal-REQUEST (quaternion estimator) algorithms are introduced for attitude determination. An interlaced filtering method is presented for the attitude determination of nano-spacecraft by setting the quaternion as the attitude representation, using the UKF and optimal-REQUEST to estimate the gyro drifts and the quaternion, respectively. The optimal-REQUEST and UKF are not isolated from each other. When the optimal-REQUEST algorithm estimates the attitude quaternion, the gyro drifts are estimated by the UKF algorithm synchronously by using the estimated attitude quaternion. Furthermore, the speed of attitude determination is improved by setting the state dimension to three. Experimental results show that the presented method has higher performance in attitude determination compared to the UKF algorithm and the traditional interlaced filtering method and can estimate the gyro drifts quickly.