An es-t (early senescence-temporary) mutant, produced by ethylene methylsulfonate treatment of strain Nipponbare, was identified in rice. The leaves of es-t appeared yellow at the seedling stage, and had decreased chl...An es-t (early senescence-temporary) mutant, produced by ethylene methylsulfonate treatment of strain Nipponbare, was identified in rice. The leaves of es-t appeared yellow at the seedling stage, and had decreased chlorophyll content. Rust spots were found during growth in es-t, especially at the leaf margin and tip. The plants showed a typical early-senescence phenotype at the milky stage. The leaf surface of es-t appeared smoother than wild-type leaves under a scanning electron microscope, because the leaves lack siliceous protuberances around the stoma. Chloroplasts grow abnormally and are filled with many starch grains in es-t. Paraffin section analysis showed that the development of the sclerenchyma cells and vascular bundles were also abnormal in es-t. Genetic analysis indicated that es-t was controlled by a recessive gene, which was finely mapped to a 42-kb interval on chromosome 5. These results will facilitate the positional cloning and functional studies of the gene.展开更多
基金supported by the National Special Program for Research and Transgenic Plants (2011ZX08009-003)the National Key Basic Research Program of China (2007CB10920203)the National Natural Science Foundation of China (30971760)
文摘An es-t (early senescence-temporary) mutant, produced by ethylene methylsulfonate treatment of strain Nipponbare, was identified in rice. The leaves of es-t appeared yellow at the seedling stage, and had decreased chlorophyll content. Rust spots were found during growth in es-t, especially at the leaf margin and tip. The plants showed a typical early-senescence phenotype at the milky stage. The leaf surface of es-t appeared smoother than wild-type leaves under a scanning electron microscope, because the leaves lack siliceous protuberances around the stoma. Chloroplasts grow abnormally and are filled with many starch grains in es-t. Paraffin section analysis showed that the development of the sclerenchyma cells and vascular bundles were also abnormal in es-t. Genetic analysis indicated that es-t was controlled by a recessive gene, which was finely mapped to a 42-kb interval on chromosome 5. These results will facilitate the positional cloning and functional studies of the gene.