The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for ...The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for different upstream velocities and incidence angles.The observations clearly revealed that cavitation incipience is enhanced by roughness at incidence angle below 2°.This is in line with the former reports,according to whose roughness element decreases the wettability and traps a larger amount of gas.As a result,surface nucleation is enhanced with an increased risk of cavitation.Surprisingly,for higher incidence angles(>3°),it was found that cavitation incipience is significantly delayed by roughness while developed cavitation is almost the same for both smooth and rough hydrofoils.This unexpected incipience delay is related to the change in the boundary layer structure due to roughness.It was also reported a significant influence of roughness on the dynamic of developed cavitation and shedding of transient cavities.展开更多
In recent years, peculiar physical phenomena enabled by non-Hermitian systems, especially the parity-time(PT)-symmetric systems, have drawn tremendous research interests. Particularly, special spectral degeneracies kn...In recent years, peculiar physical phenomena enabled by non-Hermitian systems, especially the parity-time(PT)-symmetric systems, have drawn tremendous research interests. Particularly, special spectral degeneracies known as exceptional points(EPs) and coherent perfect absorber-laser(CPAL) points where zero and infinite large eigenvalues coexist are the most popular topics to be studied. To date, the discussions of EPs that serve as transition boundaries between broken PT-symmetry phase and exact PT-symmetry phase have been intensively presented. However, the theoretical analysis and experimental validations of CPAL points are inadequate. Different from EPs, CPAL points, as a special solution of broken PT-symmetry phase, may exhibit even further counterintuitive physical features, which may have significant implications to study non-Hermitian physics. Here, we review some recent advances of CPAL phenomena in different sub-disciplines of physics, including optics, electronics and electromagnetics, and acoustics.Additionally, we also provide an envision of future directions and applications of CPAL systems.展开更多
基金National Natural Science Foundation of China(51139007)National “Twelfth Five-Year” Plan for Science&Technology Support(2015BAD20B01)China Scholarship Council(201506350088)
文摘The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for different upstream velocities and incidence angles.The observations clearly revealed that cavitation incipience is enhanced by roughness at incidence angle below 2°.This is in line with the former reports,according to whose roughness element decreases the wettability and traps a larger amount of gas.As a result,surface nucleation is enhanced with an increased risk of cavitation.Surprisingly,for higher incidence angles(>3°),it was found that cavitation incipience is significantly delayed by roughness while developed cavitation is almost the same for both smooth and rough hydrofoils.This unexpected incipience delay is related to the change in the boundary layer structure due to roughness.It was also reported a significant influence of roughness on the dynamic of developed cavitation and shedding of transient cavities.
文摘In recent years, peculiar physical phenomena enabled by non-Hermitian systems, especially the parity-time(PT)-symmetric systems, have drawn tremendous research interests. Particularly, special spectral degeneracies known as exceptional points(EPs) and coherent perfect absorber-laser(CPAL) points where zero and infinite large eigenvalues coexist are the most popular topics to be studied. To date, the discussions of EPs that serve as transition boundaries between broken PT-symmetry phase and exact PT-symmetry phase have been intensively presented. However, the theoretical analysis and experimental validations of CPAL points are inadequate. Different from EPs, CPAL points, as a special solution of broken PT-symmetry phase, may exhibit even further counterintuitive physical features, which may have significant implications to study non-Hermitian physics. Here, we review some recent advances of CPAL phenomena in different sub-disciplines of physics, including optics, electronics and electromagnetics, and acoustics.Additionally, we also provide an envision of future directions and applications of CPAL systems.