A carbon paste electrode modified with multi-walled carbon nanotubes (MWCNT) was prepared and the determination of ultra trace amount of zirconium based on the anodic adsorptive voltammetry of the zirconium-calcium-al...A carbon paste electrode modified with multi-walled carbon nanotubes (MWCNT) was prepared and the determination of ultra trace amount of zirconium based on the anodic adsorptive voltammetry of the zirconium-calcium-alizarin red S mix-polynuclear complex is described in this paper for the first time. The results showed that the sensitivity and the selectivity of the method are excellent. The second de-rivative linear scan voltammograms of the complex were recorded by polarographic analyzer from 200 to 1200 mV (vs. SCE) and it was found that the complex can be adsorbed on the surface of the electrode, yielding a peak at about 840 mV, corresponding to the oxidation of ARS in the complex. The peak cur-rent increases linearly with Zr (IV) concentration in the range of 6.0×10-12―6.0×10-11 mol·L-1 (accumu-lation time 120 s), 6.0×10-11―2.0×10-9 mol·L-1 (accumulation time 90 s) and 2.0×10-9―1.0×10-7 mol·L-1 (accumulation time 60 s) and the detection limit (S/N = 3) is 2.0×10-12 mol·L-1 (accumulation time 180 s). The procedure has been successfully applied to the determination of zirconium in the ore samples.展开更多
基金the Project of Science and Technology Fund of Hengyang City (Grant No. 2007KJ001)the Project of Scientific Research of Hengyang Normal University (Grant No. 07A19)+1 种基金the Key Project of Chinese Ministry of Education (Grant No. 206104)the Multidiscipline Scientific Research Foundation of Xiangtan Univer-sity (Grant No. 05IND08)
文摘A carbon paste electrode modified with multi-walled carbon nanotubes (MWCNT) was prepared and the determination of ultra trace amount of zirconium based on the anodic adsorptive voltammetry of the zirconium-calcium-alizarin red S mix-polynuclear complex is described in this paper for the first time. The results showed that the sensitivity and the selectivity of the method are excellent. The second de-rivative linear scan voltammograms of the complex were recorded by polarographic analyzer from 200 to 1200 mV (vs. SCE) and it was found that the complex can be adsorbed on the surface of the electrode, yielding a peak at about 840 mV, corresponding to the oxidation of ARS in the complex. The peak cur-rent increases linearly with Zr (IV) concentration in the range of 6.0×10-12―6.0×10-11 mol·L-1 (accumu-lation time 120 s), 6.0×10-11―2.0×10-9 mol·L-1 (accumulation time 90 s) and 2.0×10-9―1.0×10-7 mol·L-1 (accumulation time 60 s) and the detection limit (S/N = 3) is 2.0×10-12 mol·L-1 (accumulation time 180 s). The procedure has been successfully applied to the determination of zirconium in the ore samples.