The aim of this paper is to study numerical realization of the conditions of Max Nother's residual intersection theorem. The numerical realization relies on obtaining the inter- section of two algebraic curves by hom...The aim of this paper is to study numerical realization of the conditions of Max Nother's residual intersection theorem. The numerical realization relies on obtaining the inter- section of two algebraic curves by homotopy continuation method, computing the approximate places of an algebraic curve, getting the exact orders of a polynomial at the places, and determin- ing the multiplicity and character of a point of an algebraic curve. The numerical experiments show that our method is accurate, effective and robust without using multiprecision arithmetic, even if the coefficients of algebraic curves are inexact. We also conclude that the computational complexity of the numerical realization is polynomial time.展开更多
Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular p...Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.展开更多
基金Supported by the National Natural Science Foundation of China(61432003,61033012,11171052)
文摘The aim of this paper is to study numerical realization of the conditions of Max Nother's residual intersection theorem. The numerical realization relies on obtaining the inter- section of two algebraic curves by homotopy continuation method, computing the approximate places of an algebraic curve, getting the exact orders of a polynomial at the places, and determin- ing the multiplicity and character of a point of an algebraic curve. The numerical experiments show that our method is accurate, effective and robust without using multiprecision arithmetic, even if the coefficients of algebraic curves are inexact. We also conclude that the computational complexity of the numerical realization is polynomial time.
基金The NSF (61033012,10801023,11171052,10771028) of China
文摘Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.