We determine all square-free odd positive integers n such that the 2-Selmer groups Sn and (S)n of the elliptic curve En: y2 = x(x - n)(x - 2n) and its dual curve (E)n: y2 =x3 + 6nx2 + n2x have the smallest size: Sn = ...We determine all square-free odd positive integers n such that the 2-Selmer groups Sn and (S)n of the elliptic curve En: y2 = x(x - n)(x - 2n) and its dual curve (E)n: y2 =x3 + 6nx2 + n2x have the smallest size: Sn = {1}, (S)n = {1, 2, n, 2n}. It is well known that for such integer n, the rank of group En(Q) of the rational points on En is zero so that n is a non-congruent number. In this way we obtain many new series of elliptic curves En with rank zero and such series of integers n are non-congruent numbers.展开更多
基金This work was supported by the National Scientific Research Project 973 of China(Grant No.2004 CB 3180004)the National Natural Science Foundation of China(Grant No.60433050).
文摘We determine all square-free odd positive integers n such that the 2-Selmer groups Sn and (S)n of the elliptic curve En: y2 = x(x - n)(x - 2n) and its dual curve (E)n: y2 =x3 + 6nx2 + n2x have the smallest size: Sn = {1}, (S)n = {1, 2, n, 2n}. It is well known that for such integer n, the rank of group En(Q) of the rational points on En is zero so that n is a non-congruent number. In this way we obtain many new series of elliptic curves En with rank zero and such series of integers n are non-congruent numbers.