Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as pene...Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.展开更多
基金National Science Foundation of China(82174093)Fundamental Research Funds for the Central Universities(BUCM-2019-JYB-JS-016).
文摘Objective To analyze the interactions between different structural types of volatile oil compo-nents(VOCs)and skin lipid molecules;and investigate the mechanism of volatile oil in Chi-nese materia medica(VOCMM)as penetration enhancers.Methods In this study;210 different structural types of VOCs were selected from the VOCMM penetration enhancer database;and the molecular docking experiments were conducted with three main lipid molecules of skin:ceramide 2(CER2);cholesterol(CHL);and free fatty acid(FFA).Each VOC was docked individually with each lipid molecule.Cluster analysis was used to explore the relationship between the binding energy of VOCs and their molecular struc-tures.Nine specific pathogen-free(SPF)Sprague Dawley(SD)rats were randomly divided in-to Control;Nootkatone;and 3-Butylidenephthalide groups for in vitro percutaneous experi-ments;with three rats in each group.The donor pool solutions were 3%gastrodin;3%gas-trodin+3%nootkatone;and 3%gastrodin+3%3-butylidenephthalide;respectively.The pen-etration enhancing effects of VOCs with higher binding energy were evaluated by comparing the 12-hour cumulative percutaneous absorption of gastrodin(Q12;µg/cm²).Results(i)Most of the VOCs were non-hydrogen bonded to the hydrophobic parts of CHL and FFA;and hydrogen bonded to the head group of CER2.Among them;sesquiterpene ox-ides showed the most pronounced binding affinity to CER2.The VOCs with 2-4 rings(in-cluding carbon rings;benzene rings;and heterocycles)demonstrated stronger binding affini-ty for three skin lipid molecules compared with the VOCs without intramolecular rings(P<0.01).(ii)According to the cluster analysis;most of the VOCs that bond well to CER2 had 2-3 intramolecular rings.The non-oxygenated VOCs were bonded to CER2 in a hydrophobic manner.The oxygenated VOCs were mostly bonded to CER2 by hydrogen bonding.(iii)The results of Franz diffusion cell experiment showed that the Q12 of Control group was 260.60±25.09µg/cm2;and the transdermal absorption of gastrodin was significantly increased in Nootkatone group(Q12=5503.00±1080.00µg/cm²;P<0.01).The transdermal absorption of gastrodin was also increased in 3-Butylidenephthalide group(Q12=495.40±56.98µg/cm²;P>0.05).(iv)The type of oxygen-containing functional groups in VOCs was also an influencing factor of binding affinity to CER2.Conclusion The interactions between different types of VOCs with different structures in the VOCMM and three skin lipid molecules in the stratum corneum were investigated at the molecular level in this paper.This research provided theoretical guidance and data support for the screening of volatile oil-based penetration enhancers;and a simple and rapid method for studying the penetration-enhancing mechanism of volatile oils.