以高能耗为主要特征的工业部门是大气污染物和温室气体的重要排放源。为推动协同管控,文中结合生态环境部在重庆市组织开展的试点工作,对工业企业NOx污染治理协同控制温室气体的效应进行了量化分析。结果表明,以末端治理为手段的NOx治...以高能耗为主要特征的工业部门是大气污染物和温室气体的重要排放源。为推动协同管控,文中结合生态环境部在重庆市组织开展的试点工作,对工业企业NOx污染治理协同控制温室气体的效应进行了量化分析。结果表明,以末端治理为手段的NOx治理措施协同控制温室气体的效果为负,即工业企业去除1 t NOx会直接或间接增加CO_(2)排放1.811 t,采用SNCR技术且选择氨水等非尿素类脱硝剂有助于减少工艺过程和电力间接CO_(2)排放。2017年工业企业NOx减排导致CO_(2)排放增加52.57万t,占重庆市能源活动CO_(2)排放总量的0.3%。电力碳排放因子降低1%和降低5%情景下,NOx减排的总协同度将分别提高0.9%和4.3%,尤以水泥制造业的协同效果改善最明显。减少尿素使用和提高电力低碳化程度有助于降低工业领域NOx减排对CO_(2)排放的负协同效果。展开更多
It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses ...It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses the Gompertz model to project China's future cement demand and production.Furthermore,the multi-pollutant abatement planning model(MAP)was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry.During modeling analysis,three scenarios such as basic as usual scenario(BAU),moderately low carbon scenario(MLC),and radically low carbon scenario(RLC),were built according to different policy constraints and emission control goals.Moreover,the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated.Finally,this paper proposes a cost-efficient,green,and low carbon development roadmap for the Chinese cement sector,and puts forwards countermeasures as follows:first,different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry.Second,co-control technology list should be issued timely for cement industry,and the R&D investment on new technologies and demonstration projects should be increased.Third,the phase-out of old cement capacity needs to be continued at policy level.Fourth,it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry.展开更多
The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and indust...The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and industry-level energy models and compared.The CO2 emission trends in the considered scenarios peak from 2015 to 2030 at the level of 9e11 Gt.Sector-level analysis suggests that total emissions pathways before 2030 will be determined mainly by dynamics of emissions in the electric power industry and transportation sector.Both sectors will experience significant increase in demand,but have low-carbon alternative options for development.Based on a side-by-side comparison of modeling input and results,conclusions have been drawn regarding the sources of emissions projections differences,which include data,views on economic perspectives,or models'structure and theoretical framework.Some suggestions have been made regarding energy models'development priorities for further research.展开更多
Based on the MAP-CGE model,this paper simulated the impacts on the output,energy consumption and pollutant emissions of different cement production processes when implementing a low carbon cement standard in China.It ...Based on the MAP-CGE model,this paper simulated the impacts on the output,energy consumption and pollutant emissions of different cement production processes when implementing a low carbon cement standard in China.It also calculated the impacts on the marginal abatement cost and equilibrium price of the cement industry,and analyzed the co-abatement effects of different pollutants.The results showed that implementing the low carbon cement standard will be beneficial in promoting an upgrading of cement production processes,and strengthening the energy conservation and emission reduction in the cement industry.If there is no change in the existing technology,the cement industry will reduce SO2emissions by 1.17 kg and NOxemissions by 4.44 kg per ton of CO2emission reduction.Implementing low carbon cement standard can also promote NOxabatement in the cement industry.However,the cement industry will bear the abatement costs,and their equilibrium price will increase slightly.展开更多
文摘以高能耗为主要特征的工业部门是大气污染物和温室气体的重要排放源。为推动协同管控,文中结合生态环境部在重庆市组织开展的试点工作,对工业企业NOx污染治理协同控制温室气体的效应进行了量化分析。结果表明,以末端治理为手段的NOx治理措施协同控制温室气体的效果为负,即工业企业去除1 t NOx会直接或间接增加CO_(2)排放1.811 t,采用SNCR技术且选择氨水等非尿素类脱硝剂有助于减少工艺过程和电力间接CO_(2)排放。2017年工业企业NOx减排导致CO_(2)排放增加52.57万t,占重庆市能源活动CO_(2)排放总量的0.3%。电力碳排放因子降低1%和降低5%情景下,NOx减排的总协同度将分别提高0.9%和4.3%,尤以水泥制造业的协同效果改善最明显。减少尿素使用和提高电力低碳化程度有助于降低工业领域NOx减排对CO_(2)排放的负协同效果。
文摘It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses the Gompertz model to project China's future cement demand and production.Furthermore,the multi-pollutant abatement planning model(MAP)was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry.During modeling analysis,three scenarios such as basic as usual scenario(BAU),moderately low carbon scenario(MLC),and radically low carbon scenario(RLC),were built according to different policy constraints and emission control goals.Moreover,the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated.Finally,this paper proposes a cost-efficient,green,and low carbon development roadmap for the Chinese cement sector,and puts forwards countermeasures as follows:first,different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry.Second,co-control technology list should be issued timely for cement industry,and the R&D investment on new technologies and demonstration projects should be increased.Third,the phase-out of old cement capacity needs to be continued at policy level.Fourth,it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry.
文摘The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and industry-level energy models and compared.The CO2 emission trends in the considered scenarios peak from 2015 to 2030 at the level of 9e11 Gt.Sector-level analysis suggests that total emissions pathways before 2030 will be determined mainly by dynamics of emissions in the electric power industry and transportation sector.Both sectors will experience significant increase in demand,but have low-carbon alternative options for development.Based on a side-by-side comparison of modeling input and results,conclusions have been drawn regarding the sources of emissions projections differences,which include data,views on economic perspectives,or models'structure and theoretical framework.Some suggestions have been made regarding energy models'development priorities for further research.
基金supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(No.14XNJ008)
文摘Based on the MAP-CGE model,this paper simulated the impacts on the output,energy consumption and pollutant emissions of different cement production processes when implementing a low carbon cement standard in China.It also calculated the impacts on the marginal abatement cost and equilibrium price of the cement industry,and analyzed the co-abatement effects of different pollutants.The results showed that implementing the low carbon cement standard will be beneficial in promoting an upgrading of cement production processes,and strengthening the energy conservation and emission reduction in the cement industry.If there is no change in the existing technology,the cement industry will reduce SO2emissions by 1.17 kg and NOxemissions by 4.44 kg per ton of CO2emission reduction.Implementing low carbon cement standard can also promote NOxabatement in the cement industry.However,the cement industry will bear the abatement costs,and their equilibrium price will increase slightly.