The flow field structure on the bipolar plate significantly affects the performance of the proton exchange membrane electrolysis cell(PEMEC).This paper proposes a new interdigitated-jet hole flow field(JHFF)design to ...The flow field structure on the bipolar plate significantly affects the performance of the proton exchange membrane electrolysis cell(PEMEC).This paper proposes a new interdigitated-jet hole flow field(JHFF)design to improve the uniformities of liquid saturation,temperature,and current density distributions.The common single-path serpentine flow field(SSFF)and interdigitated flow field(IFF)are used as comparative references to constitute three PEMEC cases.An advanced numerical model has been established to simulate the performance of the PEMEC using CFD software.The results show that,due to the perpendicular mainstream and the pressure difference,the JHFF enhances the mass and heat transfer inside the porous electrode by introducing strong forced convection,which promotes gas removal underneath the ribs and cooling.Compared with the comparative flow fields,the uniformities of liquid saturation,temperature,and current density distributions by using the JHFF at the anode side are increased by 19.1%,53.2%,and 40.4%,respectively.Further,mainly owing to the largest conductive area,the PEMEC with the JHFF has superior polarization performance,which is 8.05%higher than the PEMEC with the SSFF.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51821004 and 52090062)the research project from China Three Gorges Corporation(Contract No.202003346)。
文摘The flow field structure on the bipolar plate significantly affects the performance of the proton exchange membrane electrolysis cell(PEMEC).This paper proposes a new interdigitated-jet hole flow field(JHFF)design to improve the uniformities of liquid saturation,temperature,and current density distributions.The common single-path serpentine flow field(SSFF)and interdigitated flow field(IFF)are used as comparative references to constitute three PEMEC cases.An advanced numerical model has been established to simulate the performance of the PEMEC using CFD software.The results show that,due to the perpendicular mainstream and the pressure difference,the JHFF enhances the mass and heat transfer inside the porous electrode by introducing strong forced convection,which promotes gas removal underneath the ribs and cooling.Compared with the comparative flow fields,the uniformities of liquid saturation,temperature,and current density distributions by using the JHFF at the anode side are increased by 19.1%,53.2%,and 40.4%,respectively.Further,mainly owing to the largest conductive area,the PEMEC with the JHFF has superior polarization performance,which is 8.05%higher than the PEMEC with the SSFF.