The linear barotropic vorticity equation describing wind-driven oceancirculation is considered as a convection-diffusion equation that can be numerically solved bylattice Boltzmann method. Numerical experiments are ca...The linear barotropic vorticity equation describing wind-driven oceancirculation is considered as a convection-diffusion equation that can be numerically solved bylattice Boltzmann method. Numerical experiments are carried out to examine the validity of the modelfor the wind-driven circulation. When horizontal viscosity is constant and spatially uniform, allnumerical solutions for different parameters approach analytical solutions well. The spatiallyvarying horizontal viscosity is also included in this model. It is shown that the variant horizontalviscosity increases the meridional transport significantly in west boundary current. By theinvestigation of numerical results, it was concluded that this model is competent for simulatingwestern boundary current.展开更多
文摘The linear barotropic vorticity equation describing wind-driven oceancirculation is considered as a convection-diffusion equation that can be numerically solved bylattice Boltzmann method. Numerical experiments are carried out to examine the validity of the modelfor the wind-driven circulation. When horizontal viscosity is constant and spatially uniform, allnumerical solutions for different parameters approach analytical solutions well. The spatiallyvarying horizontal viscosity is also included in this model. It is shown that the variant horizontalviscosity increases the meridional transport significantly in west boundary current. By theinvestigation of numerical results, it was concluded that this model is competent for simulatingwestern boundary current.