Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (AB...Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (ABM) combines the strength of human crowd behavior description from classical social force models with discrete dynamics expression from cellular automaton models by extending the conception of floor field. Several important factors which may influence the results of decision-making of pedestrians are taken into consideration, such as the location of sign, the attraction of exit, and the interaction among pedestrians. To compare the effect of information on the pedestrians, we construct three decision-making mechanisms with different assumptions. To validate these three simulation models, we compare the numerical results from different perspectives with rational range in the case study where the Tampere Theater evacuation was carried out. The ABM framework is open for rules modification and could be applied to different building plans and has implication for architectural design of gates and signs in order to increase the evacuation efficiency.展开更多
基金the Natural Science Foundation of Shanghai (No. 18ZR1420200)the National Natural Science Foundation of China (No. 61603253)the China Postdoctoral Science Foundation Funded Project (No. 2016M601598)。
文摘Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (ABM) combines the strength of human crowd behavior description from classical social force models with discrete dynamics expression from cellular automaton models by extending the conception of floor field. Several important factors which may influence the results of decision-making of pedestrians are taken into consideration, such as the location of sign, the attraction of exit, and the interaction among pedestrians. To compare the effect of information on the pedestrians, we construct three decision-making mechanisms with different assumptions. To validate these three simulation models, we compare the numerical results from different perspectives with rational range in the case study where the Tampere Theater evacuation was carried out. The ABM framework is open for rules modification and could be applied to different building plans and has implication for architectural design of gates and signs in order to increase the evacuation efficiency.