期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
重尾非线性自回归模型自加权M-估计的渐近分布 被引量:2
1
作者 傅可昂 丁丽 李君巧 《数学物理学报(A辑)》 CSCD 北大核心 2020年第2期475-483,共9页
考虑非线性自回归模型xt=f(xt-1,…,xt-p,θ)+∈t,其中θ为q维未知参数,{∈t}为随机误差.在允许误差方差无穷的重尾条件下,构造θ的自加权M-估计,并证明了该估计的渐近正态性.最后通过数值模拟,在随机误差服从某些重尾分布的条件下,说... 考虑非线性自回归模型xt=f(xt-1,…,xt-p,θ)+∈t,其中θ为q维未知参数,{∈t}为随机误差.在允许误差方差无穷的重尾条件下,构造θ的自加权M-估计,并证明了该估计的渐近正态性.最后通过数值模拟,在随机误差服从某些重尾分布的条件下,说明自加权M-估计比最小二乘和L1估计更有效. 展开更多
关键词 非线性自回归 自加权M-估计 重尾 渐近正态
下载PDF
GRCA(1)模型中误差方差自加权估计的渐近分布
2
作者 傅可昂 丁丽 +2 位作者 李婷 陈豪 何文凯 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2019年第4期416-421,共6页
考虑随机系数自回归模型yt=Φtyt-1+ut,其中Φt为随机系数,ut为随机误差。在允许Φt与ut相依以及Εu^4t无穷的条件下,构造了误差方差的自加权估计,并证明了该估计的渐近正态性。最后通过数值模拟,说明自加权估计的稳健和有效性。
关键词 广义随机系数自回归 误差方差 自加权估计 渐近正态
下载PDF
ASYMPTOTICS FOR THE DISTRIBUTION FUNCTION ESTIMATORS OF THE ERRORS IN SEMI-PARAMETRIC REGRESSION MODELS
3
作者 QIU Yuyang fu keang HUANG Wei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第2期360-369,共10页
This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the ra... This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the rates of convergence of either the empirical distribution or a smoothed version of the empirical distribution function matches exactly the rates obtained for an independent sample from the error distribution. 展开更多
关键词 Empirical distribution function kernel distribution function law of the iterated loga-rithm semi-parametric regression model residuals.
原文传递
A LIL for independent non-identically distributed random variables in Banach space and its applications 被引量:2
4
作者 LIU WeiDong fu keang ZHANG LiXin 《Science China Mathematics》 SCIE 2008年第2期219-232,共14页
In this paper,we prove a general law of the iterated logarithm (LIL) for independent non-identically distributed B-valued random variables.As an interesting application,we obtain the law of the iterated logarithm for ... In this paper,we prove a general law of the iterated logarithm (LIL) for independent non-identically distributed B-valued random variables.As an interesting application,we obtain the law of the iterated logarithm for the empirical covariance of Hilbertian autoregressive processes. 展开更多
关键词 law of the iterated logarithm independent random variable autoregressive Hilbertian processes covariance operator 60F15
原文传递
LIL behavior for B-valued strong mixing random variables 被引量:1
5
作者 fu keang ZHANG LiXin 《Science China Mathematics》 SCIE 2011年第4期785-792,共8页
Given a sequence of mixing random variables {X1,Xn;n≥1} taking values in a separable Banach space B,and Sn denoting the partial sum,a general law of the iterated logarithm is established,that is,we have with probabil... Given a sequence of mixing random variables {X1,Xn;n≥1} taking values in a separable Banach space B,and Sn denoting the partial sum,a general law of the iterated logarithm is established,that is,we have with probability one,lim supn→∞‖Sn‖/cn = α0 < ∞ for a regular normalizing sequence {cn}1,where α 0 is a precise value. 展开更多
关键词 law of the iterated logarithm(LIL) φ*-mixing Banach space of type p
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部