基于华南地区176个国家级自动气象站资料以及1981~2020年ECMWF ERA5再分析资料,采用区域性极端事件的客观识别方法(OITREE)、合成分析等方法,本文研究了华南地区区域性极端降水事件的时空分布特征,并分析了事件偏多年及偏少年的大尺度...基于华南地区176个国家级自动气象站资料以及1981~2020年ECMWF ERA5再分析资料,采用区域性极端事件的客观识别方法(OITREE)、合成分析等方法,本文研究了华南地区区域性极端降水事件的时空分布特征,并分析了事件偏多年及偏少年的大尺度环流特征。主要结论如下:区域性极端降水事件的频次在年际尺度上的周期变化较为明显,并具有较明显的月变化特征,高发时段为5~6月;在极端强度及影响范围上,华南地区大部分区域性极端降水事件强度约130 mm d^(-1),较少事件强度超出320 mm d^(-1),且区域性极端降水事件的影响范围呈显著上升趋势(约310 km^(2)a^(-1));在事件的综合强度上,综合指数Z呈现显著的上升趋势[0.05(10 a)^(-1)],表明事件强度呈现显著增加的趋势;在大湾区及广东北部,区域性极端降水事件的累计降水及其对总降水的贡献呈显著上升趋势,而在广西南部地区,两者呈下降趋势;在事件偏多年,华南地区存在显著的西南风水汽输送及整层水汽通量强辐合的特征,而在事件偏少年,华南地区具有整层水汽通量辐合偏弱的特征;一般降水日,850 hPa上华南地区位于弱偏东南风区,区域性极端降水事件降水日,华南地区位于气旋性环流的东南部,受到明显的西南风风速大值带影响。展开更多
基于NCEP 6 h一次,0.5°(纬度)×0.5°(经度)水平分辨率的GFS(Global Forecasting System)再分析数据,利用数值模式WRF(Weather Research and Forecasting),对2014年11月上旬西北太平洋一次极端强度的爆发气旋事件进行了模...基于NCEP 6 h一次,0.5°(纬度)×0.5°(经度)水平分辨率的GFS(Global Forecasting System)再分析数据,利用数值模式WRF(Weather Research and Forecasting),对2014年11月上旬西北太平洋一次极端强度的爆发气旋事件进行了模拟。在成功复制爆发气旋主要特征的基础上,较详细的分析了本次爆发气旋快速发展的有利环境条件,并利用分片位涡反演的方法,对此次爆发气旋的快速发展过程进行了研究,主要结论如下:(1)本次爆发气旋的爆发性发展阶段维持了约27 h,其最大加深率约为3.98 Bergeron(气旋加深率单位),最低中心气压约为919.2 hPa。(2)爆发气旋的快速发展与对流层高层高空急流对热量的输送,对流层中层西风带短波槽槽前暖平流和正涡度平流的有利准地转强迫,以及对流层低层暖锋伴随的暖平流过程密切相关。(3)分片位涡反演的结果表明,对流层顶皱褶对应的平流层大值位涡下传和降水凝结潜热过程造成的正位涡异常是本次爆发气旋快速发展的主导因子,而对流层低层的斜压过程贡献相对较小。在气旋爆发期的前期和强盛期,降水凝结潜热释放是爆发气旋发展的最重要因子,而在爆发期后期,随着降水的减弱和爆发气旋的东北向移动,对流层顶皱褶作用所造成的正位涡异常成为维持气旋快速发展的最有利因子。展开更多
利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5...利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5日00时(协调世界时,下同)至6日15时(持续40小时)一次东移并引发强降水的高原对流云团,得到了以下主要结论。本次事件中,高原东移对流云团在不同阶段的主要影响系统有所不同。移出高原前,其主要受高原涡和高原短波槽的共同影响,随着云团移出高原,高原涡消亡,而高原短波槽则随时间发展加强,成为东移云团的最主要影响系统。高原东移对流云团具有显著的深对流特征,自西向东引发了一系列的降水,移出高原后,其对流重心显著降低,降水达到最强。不同阶段高原东移对流云团的能量转换特征显著不同。云团位于高原上时(第一阶段),背景场通过动能的降尺度能量级串为造成强降水的扰动流直接提供能量,这是此阶段扰动流动能维持的主要方式;云团移出高原过程中(第二阶段),降水凝结潜热明显增强,由此制造的扰动有效位能也显著增强。在垂直运动配合下,扰动有效位能斜压释放所制造的动能是本阶段造成强降水扰动流动能维持的最主要能量来源;云团移出高原后(第三阶段),背景场对造成强降水扰动流的影响再次增强,但是不同于第一阶段的直接影响方式,该阶段背景场的作用是以一种间接的影响方式出现。其首先通过有效位能的降尺度级串将背景场的有效位能转换为扰动流的有效位能,然后通过扰动有效位能的斜压能量释放为扰动流的动能维持不断地提供能量。此外,本阶段内还出现了扰动流向背景场动能的升尺度级串供给(即扰动流的反馈),但其强度不足以对背景场的演变产生显著影响。展开更多
利用日本高知大学提供的逐小时分辨率静止卫星云顶黑体亮温(TBB)资料,使用模式匹配算法对2000~2016年(2005年除外)暖季(5~9月)青藏高原东部的两类中尺度对流系统(MCS)进行了识别和追踪,并利用人工验证订正了结果。基于此,利用NOAA的CMOR...利用日本高知大学提供的逐小时分辨率静止卫星云顶黑体亮温(TBB)资料,使用模式匹配算法对2000~2016年(2005年除外)暖季(5~9月)青藏高原东部的两类中尺度对流系统(MCS)进行了识别和追踪,并利用人工验证订正了结果。基于此,利用NOAA的CMORPH(Climate Prediction Center Morphing)降水资料和NCEP的CFSR(Climate Forecast System Reanalysis)再分析资料对高原东部两类MCS进行了统计和对比研究。研究发现,7月和8月是高原东部MCS生成最活跃的季节,然而,此两个月能够东移出高原MCS的比例最小;5月虽然MCS生成数最少,但是移出率高达近40%。对比表明,能够东移出高原的MCS(V-MCS)比不能移出的MCS(N-MCS)生命史更长,触发更早,短生命史个例占比更低。暖季各个月份,相比于N-MCS,V-MCS的对流更旺盛且发展更快,然而,由于其发生频数远低于N-MCS,总体而言,V-MCS对高原东部的降水贡献率仅为15%左右,是N-MCS相应数值的一半左右。高原东部两类MCS的环流特征差异显著,有利于V-MCS发生、维持和东移的因子主要位于对流层中低层(西风带短波槽、西风引导气流、低层风场切变),而在对流层高层,N-MCS拥有更好的高空辐散条件(其对应的南亚高压更强)。展开更多
Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") ...Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") in China and their influence on the south west vortex (SWV) and the mei-yu front vortex (MYFV) were investigated via a semi-idealized mesoscale numerical model [Weather Research and Forecasting (WRF)] simulation integrated with ten-day average fields (mei-yu period of 1-10 July 2007). The simulations successfully reproduced two MPS circulations related to first and second-step terrain, diurnal vari- ations from the eastern edge of the TP to the Yangtze River-Huaihe River valleys (YHRV), and two precipitation maximum centers related to the SWV, MYFV. Analyses of the averaged final seven-day simulation showed the different diurnal peaks of precipitation at different regions: from the aftemoon to early evening at the eastern edge of the TP; in the early evening to the next early morning in the Sichuan Basin (SCB); and in the late evening to the next early morning over the mei-yu front (MYF). Analyses of individual two-day cases confirmed that the upward branches of the nightlime MPS circulations enhanced the precipitation over the SWV and the MYFV and revealed that the eastward extension of the SWV and its con vection were conducive to triggering the MYFVs. The eastward propagation of a rainfall streak from the eastern edge of the TP to the eastern coastal region was primarily due to a series of convective activities of several systems from west to east, including the MPS between the TP and SCB, the SWV, the MPS between second-step terrain and tile east plains, and the MYFV.展开更多
During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was co...During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was comparable to the intensity of a typhoon.Rotational and divergent wind kinetic energy(KE)analyses were applied to understand the low-level wind’s rapid enhancement associated with the cyclone.It was found that:(i)the total wind KE associated with the EEC showed a remarkable enhancement in the lower troposphere during the cyclone’s maximum development stage,with the maximum/minimum wind acceleration appearing in the southeastern/northwestern quadrant of the EEC;(ii)the rotational wind KE experienced an obvious increase,which corresponded to the total wind KE enhancement,whereas the divergent wind KE,which was much smaller than the rotational wind,mainly featured a decreasing trend;(iii)the rotational wind KE enhancement showed variational features consistent with the horizontal enlargement and upward stretching of the EEC;(iv)the nonorthogonal wind KE enhanced the total wind KE in regions with strong rotational wind,which resulted in the maximum lower-tropospheric maximum wind,whereas in regions with strong divergent wind it mainly reduced the total wind KE;(v)the northward transport of total wind KE and the rotational wind KE production due to the work done by pressure gradient force were dominant factors for the enhancement of winds associated with the EEC,particularly in its southeastern section.In contrast,an overall conversion from rotational wind KE to divergent wind KE decelerated the rotational wind enhancement.展开更多
An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to ident...An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to identify an EC by using the mean sea level pressure(MSLP)or geopotential height.They are:(i)finding the location of every minimum of the MSLP/geopotential-height;(ii)establishing a targeted box for each minimum;(iii)dividing the targeted box into eight subregions;(iv)calculating eight relative slopes within the eight sub-regions;(v)confirming an EC only if all eight relative slopes are above an appropriate threshold.Based on the 0.75°×0.75°ERAInterim reanalysis field,comparisons show that the ESSD method performs better in identifying ECs than the other three previous EC detection algorithms,as it can lower the error caused by mistaking a trough for an EC.Moreover,a test of detecting ECs in the Northern Hemisphere using the ESSD method repeated 500 times(randomly distributed across 40 years)shows that the accuracy of this method varies from 79%to 91%,with an annual mean accuracy of^85%.This means that the ESSD method can provide credible results with respect to EC identification.展开更多
For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are deriv...For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are derived in this study.On this basis,a storm-relative helicity budget equation is derived,the main factors that govern the variation of helicity are discussed,and the key mechanisms underlying the helicity variation are illustrated by using schematic images.Both scale analysis and real case diagnosis are used to compare the relative importance of di erent factors on the variation of helicity.For a meso-α system,it is found that:(i)horizontal helicity is much larger than vertical helicity,and they show signi cantly di erent variation mechanisms;(ii)for the vertical helicity,the vertical perturbation pressure gradient force,buoyancy,the diver-gence-related e ect,and the conversion between vertical and horizontal helicity govern its variation(whereas,the conversion is negligible for the evolution of horizontal helicity);and(iii)baroclinity is crucial for the variation of horizontal helicity,but it is only of secondary importance for the vertical helicity variation.展开更多
Based on CMORPH precipitation estimates and ERA5 reanalysis data,this study investigates the mechanisms accounting for the repeated occurrence of torrential rainfall over South Thailand in early January 2017,which ind...Based on CMORPH precipitation estimates and ERA5 reanalysis data,this study investigates the mechanisms accounting for the repeated occurrence of torrential rainfall over South Thailand in early January 2017,which induced the strongest floods over Ko Samui and Ko Phangan in the last almost 30 years.It is found that the maintenance of a northeastward-moving mesoscale vortex that formed southwest of the Indochina Peninsula was the direct reason for the series of torrential rainfall events.Analysis of the vorticity budget illustrates that convergence-related horizontal shrinking was the most favorable factor for the maintenance of the vortex.Tilting was the second most favorable factor,whereas horizontal and vertical transport mainly caused a net export of cyclonic vorticity from the vortex’s three-dimensional range,which was detrimental for its maintenance.Further analysis indicates that tilting and vertical vorticity transport were sensitive to the vortex’s displacement and the enhancement of cyclonic vorticity at lower levels around the vortex,respectively,as the two factors showed completely different effects on the persistence of the vortex during two different stages.展开更多
During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vo...During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.展开更多
Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation charact...Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation characteristics, as well as the dry-cold air and moisture sources of each type of PHREs were examined. The main results are as follows. A total of 32 non-typhoon influenced PHREs in South China were identified over the study period. By correlation analysis, the PHREs are divided into three types: SC-A type, with its main rainbelt located in the coastal areas and the northeast of Guangdong Province; SC-B type, with its main rainbelt between Guangdong Province and Guangxi Region; and SC-C type, with its main rainbelt located in the north of Guangxi Region. For the SC-A events, dry-cold air flew to South China under the steering effect of troughs in the middle troposphere which originated from the Ural Mountains and West Siberia Plain; whereas, the SC-C events were not influenced by the cold air from high latitudes. There were three water vapor pathways from low-latitude areas for both the SC-A and SC-C PHREs. The tropical Indian Ocean was the main water vapor source for these two PHRE types, while the South China Sea also contributed to the SC-C PHREs. In addition, the SC-A events were also influenced by moist and cold air originating from the Yellow Sea. Generally, the SC-C PHREs belonged to a warm-sector rainfall type, whose precipitation areas were dominated by southwesterly wind, and the convergence in wind speed was the main reason for precipitation.展开更多
文摘基于华南地区176个国家级自动气象站资料以及1981~2020年ECMWF ERA5再分析资料,采用区域性极端事件的客观识别方法(OITREE)、合成分析等方法,本文研究了华南地区区域性极端降水事件的时空分布特征,并分析了事件偏多年及偏少年的大尺度环流特征。主要结论如下:区域性极端降水事件的频次在年际尺度上的周期变化较为明显,并具有较明显的月变化特征,高发时段为5~6月;在极端强度及影响范围上,华南地区大部分区域性极端降水事件强度约130 mm d^(-1),较少事件强度超出320 mm d^(-1),且区域性极端降水事件的影响范围呈显著上升趋势(约310 km^(2)a^(-1));在事件的综合强度上,综合指数Z呈现显著的上升趋势[0.05(10 a)^(-1)],表明事件强度呈现显著增加的趋势;在大湾区及广东北部,区域性极端降水事件的累计降水及其对总降水的贡献呈显著上升趋势,而在广西南部地区,两者呈下降趋势;在事件偏多年,华南地区存在显著的西南风水汽输送及整层水汽通量强辐合的特征,而在事件偏少年,华南地区具有整层水汽通量辐合偏弱的特征;一般降水日,850 hPa上华南地区位于弱偏东南风区,区域性极端降水事件降水日,华南地区位于气旋性环流的东南部,受到明显的西南风风速大值带影响。
文摘利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5日00时(协调世界时,下同)至6日15时(持续40小时)一次东移并引发强降水的高原对流云团,得到了以下主要结论。本次事件中,高原东移对流云团在不同阶段的主要影响系统有所不同。移出高原前,其主要受高原涡和高原短波槽的共同影响,随着云团移出高原,高原涡消亡,而高原短波槽则随时间发展加强,成为东移云团的最主要影响系统。高原东移对流云团具有显著的深对流特征,自西向东引发了一系列的降水,移出高原后,其对流重心显著降低,降水达到最强。不同阶段高原东移对流云团的能量转换特征显著不同。云团位于高原上时(第一阶段),背景场通过动能的降尺度能量级串为造成强降水的扰动流直接提供能量,这是此阶段扰动流动能维持的主要方式;云团移出高原过程中(第二阶段),降水凝结潜热明显增强,由此制造的扰动有效位能也显著增强。在垂直运动配合下,扰动有效位能斜压释放所制造的动能是本阶段造成强降水扰动流动能维持的最主要能量来源;云团移出高原后(第三阶段),背景场对造成强降水扰动流的影响再次增强,但是不同于第一阶段的直接影响方式,该阶段背景场的作用是以一种间接的影响方式出现。其首先通过有效位能的降尺度级串将背景场的有效位能转换为扰动流的有效位能,然后通过扰动有效位能的斜压能量释放为扰动流的动能维持不断地提供能量。此外,本阶段内还出现了扰动流向背景场动能的升尺度级串供给(即扰动流的反馈),但其强度不足以对背景场的演变产生显著影响。
文摘利用日本高知大学提供的逐小时分辨率静止卫星云顶黑体亮温(TBB)资料,使用模式匹配算法对2000~2016年(2005年除外)暖季(5~9月)青藏高原东部的两类中尺度对流系统(MCS)进行了识别和追踪,并利用人工验证订正了结果。基于此,利用NOAA的CMORPH(Climate Prediction Center Morphing)降水资料和NCEP的CFSR(Climate Forecast System Reanalysis)再分析资料对高原东部两类MCS进行了统计和对比研究。研究发现,7月和8月是高原东部MCS生成最活跃的季节,然而,此两个月能够东移出高原MCS的比例最小;5月虽然MCS生成数最少,但是移出率高达近40%。对比表明,能够东移出高原的MCS(V-MCS)比不能移出的MCS(N-MCS)生命史更长,触发更早,短生命史个例占比更低。暖季各个月份,相比于N-MCS,V-MCS的对流更旺盛且发展更快,然而,由于其发生频数远低于N-MCS,总体而言,V-MCS对高原东部的降水贡献率仅为15%左右,是N-MCS相应数值的一半左右。高原东部两类MCS的环流特征差异显著,有利于V-MCS发生、维持和东移的因子主要位于对流层中低层(西风带短波槽、西风引导气流、低层风场切变),而在对流层高层,N-MCS拥有更好的高空辐散条件(其对应的南亚高压更强)。
基金jointly sponsored by a project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant No.2011LASWA15)the National Key Basic Research and Development Project of China(Grant No.2012CB417201)the National Natural Science Foundation of China(Grant No.40930951)
文摘Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") in China and their influence on the south west vortex (SWV) and the mei-yu front vortex (MYFV) were investigated via a semi-idealized mesoscale numerical model [Weather Research and Forecasting (WRF)] simulation integrated with ten-day average fields (mei-yu period of 1-10 July 2007). The simulations successfully reproduced two MPS circulations related to first and second-step terrain, diurnal vari- ations from the eastern edge of the TP to the Yangtze River-Huaihe River valleys (YHRV), and two precipitation maximum centers related to the SWV, MYFV. Analyses of the averaged final seven-day simulation showed the different diurnal peaks of precipitation at different regions: from the aftemoon to early evening at the eastern edge of the TP; in the early evening to the next early morning in the Sichuan Basin (SCB); and in the late evening to the next early morning over the mei-yu front (MYF). Analyses of individual two-day cases confirmed that the upward branches of the nightlime MPS circulations enhanced the precipitation over the SWV and the MYFV and revealed that the eastward extension of the SWV and its con vection were conducive to triggering the MYFVs. The eastward propagation of a rainfall streak from the eastern edge of the TP to the eastern coastal region was primarily due to a series of convective activities of several systems from west to east, including the MPS between the TP and SCB, the SWV, the MPS between second-step terrain and tile east plains, and the MYFV.
基金supported by the National Key R&D Program of China grant number 2018YFC0809400the National Natural Science Foundation of China grant numbers41775046 and 91637211the Youth Innovation Promotion Association,Chinese Academy of Sciences。
文摘During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was comparable to the intensity of a typhoon.Rotational and divergent wind kinetic energy(KE)analyses were applied to understand the low-level wind’s rapid enhancement associated with the cyclone.It was found that:(i)the total wind KE associated with the EEC showed a remarkable enhancement in the lower troposphere during the cyclone’s maximum development stage,with the maximum/minimum wind acceleration appearing in the southeastern/northwestern quadrant of the EEC;(ii)the rotational wind KE experienced an obvious increase,which corresponded to the total wind KE enhancement,whereas the divergent wind KE,which was much smaller than the rotational wind,mainly featured a decreasing trend;(iii)the rotational wind KE enhancement showed variational features consistent with the horizontal enlargement and upward stretching of the EEC;(iv)the nonorthogonal wind KE enhanced the total wind KE in regions with strong rotational wind,which resulted in the maximum lower-tropospheric maximum wind,whereas in regions with strong divergent wind it mainly reduced the total wind KE;(v)the northward transport of total wind KE and the rotational wind KE production due to the work done by pressure gradient force were dominant factors for the enhancement of winds associated with the EEC,particularly in its southeastern section.In contrast,an overall conversion from rotational wind KE to divergent wind KE decelerated the rotational wind enhancement.
基金supported by the the Science and Technology Foundation of State Grid Corporation of Chinagrant number 5200-201955490A-0-0-00。
文摘An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to identify an EC by using the mean sea level pressure(MSLP)or geopotential height.They are:(i)finding the location of every minimum of the MSLP/geopotential-height;(ii)establishing a targeted box for each minimum;(iii)dividing the targeted box into eight subregions;(iv)calculating eight relative slopes within the eight sub-regions;(v)confirming an EC only if all eight relative slopes are above an appropriate threshold.Based on the 0.75°×0.75°ERAInterim reanalysis field,comparisons show that the ESSD method performs better in identifying ECs than the other three previous EC detection algorithms,as it can lower the error caused by mistaking a trough for an EC.Moreover,a test of detecting ECs in the Northern Hemisphere using the ESSD method repeated 500 times(randomly distributed across 40 years)shows that the accuracy of this method varies from 79%to 91%,with an annual mean accuracy of^85%.This means that the ESSD method can provide credible results with respect to EC identification.
基金supported by the National Key R&D Program of China [grant number 2018YFC0809400]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA17010105]+1 种基金the Key R&D Program of Jiangxi Province of China(Grant/Award Number:20171BBG70005)the National Natural Science Foundation of China [grant number 41775046]
文摘For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are derived in this study.On this basis,a storm-relative helicity budget equation is derived,the main factors that govern the variation of helicity are discussed,and the key mechanisms underlying the helicity variation are illustrated by using schematic images.Both scale analysis and real case diagnosis are used to compare the relative importance of di erent factors on the variation of helicity.For a meso-α system,it is found that:(i)horizontal helicity is much larger than vertical helicity,and they show signi cantly di erent variation mechanisms;(ii)for the vertical helicity,the vertical perturbation pressure gradient force,buoyancy,the diver-gence-related e ect,and the conversion between vertical and horizontal helicity govern its variation(whereas,the conversion is negligible for the evolution of horizontal helicity);and(iii)baroclinity is crucial for the variation of horizontal helicity,but it is only of secondary importance for the vertical helicity variation.
基金This research was supported by the National Key R&D Program of China[grant number 2018YFC1507400]the National Natural Science Foundation of China[grant numbers 41861144015 and 41775046]the Youth Innovation Promotion Association,Chinese Academy of Sciences.
文摘Based on CMORPH precipitation estimates and ERA5 reanalysis data,this study investigates the mechanisms accounting for the repeated occurrence of torrential rainfall over South Thailand in early January 2017,which induced the strongest floods over Ko Samui and Ko Phangan in the last almost 30 years.It is found that the maintenance of a northeastward-moving mesoscale vortex that formed southwest of the Indochina Peninsula was the direct reason for the series of torrential rainfall events.Analysis of the vorticity budget illustrates that convergence-related horizontal shrinking was the most favorable factor for the maintenance of the vortex.Tilting was the second most favorable factor,whereas horizontal and vertical transport mainly caused a net export of cyclonic vorticity from the vortex’s three-dimensional range,which was detrimental for its maintenance.Further analysis indicates that tilting and vertical vorticity transport were sensitive to the vortex’s displacement and the enhancement of cyclonic vorticity at lower levels around the vortex,respectively,as the two factors showed completely different effects on the persistence of the vortex during two different stages.
基金supported by the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant No. 2010LASW-A02)National Natural Science Foundation of China(Grant Nos.40930951 and 41040037)+1 种基金Chinese Special Scientific Research Project for Public Interest(Grant No.GYHY200906004)National Key Basic Research and Development Project(Grant No.2010CB951804)
文摘During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417201)National Natural Science Foundation of China(41375053)
文摘Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation characteristics, as well as the dry-cold air and moisture sources of each type of PHREs were examined. The main results are as follows. A total of 32 non-typhoon influenced PHREs in South China were identified over the study period. By correlation analysis, the PHREs are divided into three types: SC-A type, with its main rainbelt located in the coastal areas and the northeast of Guangdong Province; SC-B type, with its main rainbelt between Guangdong Province and Guangxi Region; and SC-C type, with its main rainbelt located in the north of Guangxi Region. For the SC-A events, dry-cold air flew to South China under the steering effect of troughs in the middle troposphere which originated from the Ural Mountains and West Siberia Plain; whereas, the SC-C events were not influenced by the cold air from high latitudes. There were three water vapor pathways from low-latitude areas for both the SC-A and SC-C PHREs. The tropical Indian Ocean was the main water vapor source for these two PHRE types, while the South China Sea also contributed to the SC-C PHREs. In addition, the SC-A events were also influenced by moist and cold air originating from the Yellow Sea. Generally, the SC-C PHREs belonged to a warm-sector rainfall type, whose precipitation areas were dominated by southwesterly wind, and the convergence in wind speed was the main reason for precipitation.