The wound is induced by several mechanical and metabolic factors.In the etiology of the wound recovery,excessive oxidative stress,calcium ion(Ca^(2+))influx,and apoptosis have important roles.Ca^(2+)-permeable TRPM2 c...The wound is induced by several mechanical and metabolic factors.In the etiology of the wound recovery,excessive oxidative stress,calcium ion(Ca^(2+))influx,and apoptosis have important roles.Ca^(2+)-permeable TRPM2 channel is activated by oxidative stress.Protective roles of Hypericum perforatum extract(HP)on the mechanical nerve injury-induced apoptosis and oxidative toxicity through regulation of TRPM2 in the experimental animals were recently reported.The potential protective roles in HP treatment were evaluated on the TRPM2-mediated cellular oxidative toxicity in the renal epithelium(MPK)cells.The cells were divided into three groups as control,wound,and wound+HP treatment(75μM for 72 h).Wound diameters were more importantly decreased in the wound+HP group than in the wound group.In addition,the results of laser confocal microscopy analyses indicated protective roles of HP and TRPM2 antagonists(N-(p-Amylcinnamoyl)anthranilic acid and 2-aminoethyl diphenylborinate)against the wound-induced increase of Ca^(2+) influx and mitochondrial ROS production.The wound-induced increase of early(annexin V-FITC)apoptosis and late(propidium iodide)apoptosis were also decreased in the cells by the HP treatment.In conclusion,HP treatment acted protective effects against wound-mediated oxidative cell toxicity and apoptosis through TRPM2 inhibition.These effects may be attributed to their potent antioxidant effect.展开更多
文摘The wound is induced by several mechanical and metabolic factors.In the etiology of the wound recovery,excessive oxidative stress,calcium ion(Ca^(2+))influx,and apoptosis have important roles.Ca^(2+)-permeable TRPM2 channel is activated by oxidative stress.Protective roles of Hypericum perforatum extract(HP)on the mechanical nerve injury-induced apoptosis and oxidative toxicity through regulation of TRPM2 in the experimental animals were recently reported.The potential protective roles in HP treatment were evaluated on the TRPM2-mediated cellular oxidative toxicity in the renal epithelium(MPK)cells.The cells were divided into three groups as control,wound,and wound+HP treatment(75μM for 72 h).Wound diameters were more importantly decreased in the wound+HP group than in the wound group.In addition,the results of laser confocal microscopy analyses indicated protective roles of HP and TRPM2 antagonists(N-(p-Amylcinnamoyl)anthranilic acid and 2-aminoethyl diphenylborinate)against the wound-induced increase of Ca^(2+) influx and mitochondrial ROS production.The wound-induced increase of early(annexin V-FITC)apoptosis and late(propidium iodide)apoptosis were also decreased in the cells by the HP treatment.In conclusion,HP treatment acted protective effects against wound-mediated oxidative cell toxicity and apoptosis through TRPM2 inhibition.These effects may be attributed to their potent antioxidant effect.