Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, ...Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, Ricci curvature tensor and scalar curvature of a metric by using the moving frame method. We establish a relation between the variation of the volume of a metric and that of a submanifold. We find that the latter is a consequence of the former. Finally we give an application of these formulas to the variations of heat invariants. We prove that a conformally flat metric g is a critical point of the third heat invariant functional for a compact 4-dimensional manifold M, then (M, g) is either scalar flat or a space form.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10571088)
文摘Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, Ricci curvature tensor and scalar curvature of a metric by using the moving frame method. We establish a relation between the variation of the volume of a metric and that of a submanifold. We find that the latter is a consequence of the former. Finally we give an application of these formulas to the variations of heat invariants. We prove that a conformally flat metric g is a critical point of the third heat invariant functional for a compact 4-dimensional manifold M, then (M, g) is either scalar flat or a space form.