The increasing development of biomedicine and bioelectronics has highlighted the requirement for smart materials that can respond to changes in physical and chemical properties under external environments,such as magn...The increasing development of biomedicine and bioelectronics has highlighted the requirement for smart materials that can respond to changes in physical and chemical properties under external environments,such as magnetic fields,electric fields,and temperature.Accordingly,hydrogels have been widely evaluated as promising candidates for smart materials owing to their intriguing structures comprising a cross‐linked network of polymer chains with interstitial spaces filled with solvent water.This feature endows hydrogels with soft and wet characteristics,which not only induce high tissue affinity but also allow the introduction of environmentally responsive nanoparticles to release specific smart properties.Herein,we reviewed novel smart hydrogels that can be applied in biomedicine and bioelectronics,and highlighted and discussed existing challenges in current technologies and research.展开更多
基金Key‐Area Research and Development Program of Guangdong Province,Grant/Award Number:2019B010941002National Natural Science Foundation of China,Grant/Award Numbers:82072071,51972276+2 种基金Sichuan Key Research and Development Program,Grant/Award Number:22ZDYF2034Shenzhen Funds of the Central Government,Grant/Award Number:2021SZVUP123Fundamental Research Funds for Central Universities,Grant/Award Number:2682020ZT79。
文摘The increasing development of biomedicine and bioelectronics has highlighted the requirement for smart materials that can respond to changes in physical and chemical properties under external environments,such as magnetic fields,electric fields,and temperature.Accordingly,hydrogels have been widely evaluated as promising candidates for smart materials owing to their intriguing structures comprising a cross‐linked network of polymer chains with interstitial spaces filled with solvent water.This feature endows hydrogels with soft and wet characteristics,which not only induce high tissue affinity but also allow the introduction of environmentally responsive nanoparticles to release specific smart properties.Herein,we reviewed novel smart hydrogels that can be applied in biomedicine and bioelectronics,and highlighted and discussed existing challenges in current technologies and research.