Deep bed filtration in aqueous media is a well-known process for solid-liquid separation. However, the use of deep bed filtration for the purification of metal melts is a relatively new field of application, In partic...Deep bed filtration in aqueous media is a well-known process for solid-liquid separation. However, the use of deep bed filtration for the purification of metal melts is a relatively new field of application, In particular, the separation mechanism of metal melts filtration is a new area for investigation. The current paper aims at examining the influence of wetting on the filtration efficiency of ceramic foam filters that is an important feature of the metal melts filtration process. A model system was designed using water and alumina particles (〈200μm). The particles and filter medium were coated to model poor wetting. Thus, examination of the influence of wetting on the adhesion energy and filtration performance was possible. Furthermore, the effect of fluid velocity was studied. To this end, the experiments were carried out under atmospheric conditions and at 20℃. The findings showed that poor wetting between the fluid and solid phase significantly increased the filtration efficiency.展开更多
基金the German Research Foundation(DFG) for supporting the studies in the sub-project BO1,which is part of the Collaborative Research Center CRC 920
文摘Deep bed filtration in aqueous media is a well-known process for solid-liquid separation. However, the use of deep bed filtration for the purification of metal melts is a relatively new field of application, In particular, the separation mechanism of metal melts filtration is a new area for investigation. The current paper aims at examining the influence of wetting on the filtration efficiency of ceramic foam filters that is an important feature of the metal melts filtration process. A model system was designed using water and alumina particles (〈200μm). The particles and filter medium were coated to model poor wetting. Thus, examination of the influence of wetting on the adhesion energy and filtration performance was possible. Furthermore, the effect of fluid velocity was studied. To this end, the experiments were carried out under atmospheric conditions and at 20℃. The findings showed that poor wetting between the fluid and solid phase significantly increased the filtration efficiency.