Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre desig...Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre designs that allow for very large mode areas at high average powers with diffraction-limited beam quality are of enormous interest.Ytterbium-doped,rod-type,large-pitch fibres(LPF)enable extreme fibre dimensions,i.e.,effective single-mode fibres with mode sizes exceeding 100 times the wavelength of the guided radiation,by exploiting the novel concept of delocalisation of higher-order transverse modes.The non-resonant nature of the operating principle makes LPF suitable for high power extraction.This design allows for an unparalleled level of performance in pulsed fibre lasers.展开更多
The development of high-power,broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications...The development of high-power,broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics,spectroscopy,microscopy,and fundamental science.One of the major,long-standing challenges in improving the performance of these applications has been the construction of compact,broadband mid-infrared radiation sources,which unify the properties of high brightness and spatial and temporal coherence.Due to the lack of such radiation sources,several emerging applications can be addressed only with infrared(IR)-beamlines in largescale synchrotron facilities,which are limited regarding user access and only partially fulfill these properties.Here,we present a table-top,broadband,coherent mid-infrared light source that provides brightness at an unprecedented level that supersedes that of synchrotrons in the wavelength range between 3.7 and 18μm by several orders of magnitude.This result is enabled by a high-power,few-cycle Tm-doped fiber laser system,which is employed as a pump at 1.9μm wavelength for intrapulse difference frequency generation(IPDFG).IPDFG intrinsically ensures the formation of carrierenvelope-phase stable pulses,which provide ideal prerequisites for state-of-the-art spectroscopy and microscopy.展开更多
基金The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme(FP7/2007-2013)/ERC Grant Agreement No.[240460]the Thuringian Ministry of Education,Science and Culture under contract PE203-2-1(MOFA)and contract B514-10061(Green Photonics).FJ acknowledges financial support from the Abbe School of Photonics.
文摘Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre designs that allow for very large mode areas at high average powers with diffraction-limited beam quality are of enormous interest.Ytterbium-doped,rod-type,large-pitch fibres(LPF)enable extreme fibre dimensions,i.e.,effective single-mode fibres with mode sizes exceeding 100 times the wavelength of the guided radiation,by exploiting the novel concept of delocalisation of higher-order transverse modes.The non-resonant nature of the operating principle makes LPF suitable for high power extraction.This design allows for an unparalleled level of performance in pulsed fibre lasers.
基金supported by the German Federal Ministry of Education and Research(BMBF)under contract“NUKLEUS”(13N13973)the United States AFOSR(FA9550-15-10041)+2 种基金the United States ARO(W911NF-12-1-0450 and W911NF-17-1-0501)support by the Helmholtz-Institute Jenasupport by the Carl Zeiss Stiftung.
文摘The development of high-power,broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics,spectroscopy,microscopy,and fundamental science.One of the major,long-standing challenges in improving the performance of these applications has been the construction of compact,broadband mid-infrared radiation sources,which unify the properties of high brightness and spatial and temporal coherence.Due to the lack of such radiation sources,several emerging applications can be addressed only with infrared(IR)-beamlines in largescale synchrotron facilities,which are limited regarding user access and only partially fulfill these properties.Here,we present a table-top,broadband,coherent mid-infrared light source that provides brightness at an unprecedented level that supersedes that of synchrotrons in the wavelength range between 3.7 and 18μm by several orders of magnitude.This result is enabled by a high-power,few-cycle Tm-doped fiber laser system,which is employed as a pump at 1.9μm wavelength for intrapulse difference frequency generation(IPDFG).IPDFG intrinsically ensures the formation of carrierenvelope-phase stable pulses,which provide ideal prerequisites for state-of-the-art spectroscopy and microscopy.