Power requirements in the city of Al Mirfa in western Abu Dhabi are covered by the Al Mirfa Power and Distillation Plant. Comprehensive emission inventories for 2007-2008 were used to execute an ENVIMAN (OPSIS AB Comp...Power requirements in the city of Al Mirfa in western Abu Dhabi are covered by the Al Mirfa Power and Distillation Plant. Comprehensive emission inventories for 2007-2008 were used to execute an ENVIMAN (OPSIS AB Company, Sweden) Gaussian dispersion model to predict ambient ground level concentrations of nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM10) and sulfur dioxide (SO2) at selected receptors considering all emission sources located in the area. Two years of meteorological data was used in conjunction with the dispersion model to compute NOx and SO2 levels in and around the power plant. To validate the model, computed results were compared with the average values measured at a fixed Air Quality Station in Al Mirfa city. The highest hourly, daily and annual ground level concentrations under exiting meteorological conditions were then analyzed. The computed results for the study area revealed that daily, hourly and annual concentration values did not exceed the Federal Environment Agency (FEA) standard, and the contribution of plant emissions to the ground levels pollutants in the surrounded area range from 3.1 to 109 μg/m3 for NO2, and 1.1 to 41.4 μg/m3 for CO. This study can be considered a baseline study for any future expansion in the plant. Based on these results, mitigation strategies are not required.展开更多
From 2007-2009, National Energy and Water Research Center (NEWRC) on behalf of Abu Dhabi Water and Electricity Authority (ADWEA) conducted a long term baseline study of nitrogen dioxide (NO2), carbon monoxide (CO), su...From 2007-2009, National Energy and Water Research Center (NEWRC) on behalf of Abu Dhabi Water and Electricity Authority (ADWEA) conducted a long term baseline study of nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and particulate matter 2, SO2, and 8 hour average of CO were within the acceptable levels of 400, 300 and 30,000 μg/m3 respectively, whereas the levels of O3 as 8 hour average (3) and PM10 (3) occasionally exceeded the FEA permissible limits during the study period. Seasonal variation based on three years data reveals that the highest concentration of NO2 and SO2 were during winter and for CO and O3 during summer months. Results indicate that the levels of SO2 and CO were significantly controlled and improved while the fuel combustion of Al Mirfa power plant had increased from 2007 to 2009. Dust has significantly impact on the air quality by elevated levels of PM10 exceed in several instances associated with regional sand- storm during the monitoring period.展开更多
文摘Power requirements in the city of Al Mirfa in western Abu Dhabi are covered by the Al Mirfa Power and Distillation Plant. Comprehensive emission inventories for 2007-2008 were used to execute an ENVIMAN (OPSIS AB Company, Sweden) Gaussian dispersion model to predict ambient ground level concentrations of nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM10) and sulfur dioxide (SO2) at selected receptors considering all emission sources located in the area. Two years of meteorological data was used in conjunction with the dispersion model to compute NOx and SO2 levels in and around the power plant. To validate the model, computed results were compared with the average values measured at a fixed Air Quality Station in Al Mirfa city. The highest hourly, daily and annual ground level concentrations under exiting meteorological conditions were then analyzed. The computed results for the study area revealed that daily, hourly and annual concentration values did not exceed the Federal Environment Agency (FEA) standard, and the contribution of plant emissions to the ground levels pollutants in the surrounded area range from 3.1 to 109 μg/m3 for NO2, and 1.1 to 41.4 μg/m3 for CO. This study can be considered a baseline study for any future expansion in the plant. Based on these results, mitigation strategies are not required.
文摘From 2007-2009, National Energy and Water Research Center (NEWRC) on behalf of Abu Dhabi Water and Electricity Authority (ADWEA) conducted a long term baseline study of nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and particulate matter 2, SO2, and 8 hour average of CO were within the acceptable levels of 400, 300 and 30,000 μg/m3 respectively, whereas the levels of O3 as 8 hour average (3) and PM10 (3) occasionally exceeded the FEA permissible limits during the study period. Seasonal variation based on three years data reveals that the highest concentration of NO2 and SO2 were during winter and for CO and O3 during summer months. Results indicate that the levels of SO2 and CO were significantly controlled and improved while the fuel combustion of Al Mirfa power plant had increased from 2007 to 2009. Dust has significantly impact on the air quality by elevated levels of PM10 exceed in several instances associated with regional sand- storm during the monitoring period.