This paper presents a radio optical network simulation tool(RONST)for modeling optical-wireless systems.For a typical optical and electrical chain environment,performance should be optimized concurrently before system...This paper presents a radio optical network simulation tool(RONST)for modeling optical-wireless systems.For a typical optical and electrical chain environment,performance should be optimized concurrently before system implementation.As a result,simulating such systems turns out to be a multidisciplinary problem.The governing equations are incompatible with co-simulation in the traditional environments of existing software(SW)packages.The ultra-wideband(UWB)technology is an ideal candidate for providing high-speed short-range access for wireless services.The limited wireless reach of this technology is a significant limitation.A feasible solution to the problem of extending UWB signals is to transmit these signals to endusers via optical fibers.This concept implies the need for the establishment of a dependable environment for studying such systems.Therefore,the essential novelty of the proposed SW is that it provides designers,engineers,and researchers with a dependable simulation framework that can accurately and efficiently predict and/or optimize the behavior of such systems in a single optical-electronic simulation package.Furthermore,it is supported by a strong mathematical foundation with integrated algorithms to achieve broad flexibility and low computational cost.To validate the proposed tool,RONST was deployed on an ultra-wideband over fiber(UWBoF)system.The bit error rate(BER)has been calculated over a UWBoF system,and there is good agreement between the experimental and simulated results.展开更多
文摘This paper presents a radio optical network simulation tool(RONST)for modeling optical-wireless systems.For a typical optical and electrical chain environment,performance should be optimized concurrently before system implementation.As a result,simulating such systems turns out to be a multidisciplinary problem.The governing equations are incompatible with co-simulation in the traditional environments of existing software(SW)packages.The ultra-wideband(UWB)technology is an ideal candidate for providing high-speed short-range access for wireless services.The limited wireless reach of this technology is a significant limitation.A feasible solution to the problem of extending UWB signals is to transmit these signals to endusers via optical fibers.This concept implies the need for the establishment of a dependable environment for studying such systems.Therefore,the essential novelty of the proposed SW is that it provides designers,engineers,and researchers with a dependable simulation framework that can accurately and efficiently predict and/or optimize the behavior of such systems in a single optical-electronic simulation package.Furthermore,it is supported by a strong mathematical foundation with integrated algorithms to achieve broad flexibility and low computational cost.To validate the proposed tool,RONST was deployed on an ultra-wideband over fiber(UWBoF)system.The bit error rate(BER)has been calculated over a UWBoF system,and there is good agreement between the experimental and simulated results.