In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra the...In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.展开更多
文摘In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.