A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water ...A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water with dissolved salts, and particles in the wet flue gas form secondary pollution in the surrounding atmosphere. In this study, a deep purification technology for flue gas involving phase-transition agglom- eration and dehumidification (PAD) is proposed. This deep purification technology includes two technical routes: the integrated technology of phase-transition agglomeration and a wet electrostatic precipitator (PAW); and the integrated technology of phase-transition agglomeration and a mist eliminator (PAM). Industrial applications of PAW and PAM were carried out on 630 and 1000 MW coal-fired units, respectively. The results show that the average amount of recycled water obtained from wet flue gas by means of PAD is more than 4 g.(kg.℃)-1 Decreasing the wet flue gas temperature by 1.5-5.3 ℃ allows 5%-20% of the moisture in the flue gas to be recycled; therefore, this process could effectively save water resources and significantly reduce water vapor emissions. In addition, the moist plume is effectively elim- inated. With the use of this process, the ion concentration in droplets of flue gas is decreased by more than 65%, the SO3 removal efficiency from flue gas is greater than 75%, and the removal efficiency of par- ticulate matter is 92.53%.展开更多
文摘A moist plume forms when the flue gas emitted from wet desulfurization equipment exits into the ambi- ent air, resulting in a waste of water resources and visual pollution. In addition, sulfur trioxide (SO3), water with dissolved salts, and particles in the wet flue gas form secondary pollution in the surrounding atmosphere. In this study, a deep purification technology for flue gas involving phase-transition agglom- eration and dehumidification (PAD) is proposed. This deep purification technology includes two technical routes: the integrated technology of phase-transition agglomeration and a wet electrostatic precipitator (PAW); and the integrated technology of phase-transition agglomeration and a mist eliminator (PAM). Industrial applications of PAW and PAM were carried out on 630 and 1000 MW coal-fired units, respectively. The results show that the average amount of recycled water obtained from wet flue gas by means of PAD is more than 4 g.(kg.℃)-1 Decreasing the wet flue gas temperature by 1.5-5.3 ℃ allows 5%-20% of the moisture in the flue gas to be recycled; therefore, this process could effectively save water resources and significantly reduce water vapor emissions. In addition, the moist plume is effectively elim- inated. With the use of this process, the ion concentration in droplets of flue gas is decreased by more than 65%, the SO3 removal efficiency from flue gas is greater than 75%, and the removal efficiency of par- ticulate matter is 92.53%.