Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In aut...Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In autonomous vehicles,imitation-learning-based steering angle prediction is viable due to the visual imagery comprehension of CNNs.In this regard,globally,researchers are currently focusing on the architectural design and optimization of the hyperparameters of CNNs to achieve the best results.Literature has proven the superiority of metaheuristic algorithms over the manual-tuning of CNNs.However,to the best of our knowledge,these techniques are yet to be applied to address the problem of imitationlearning-based steering angle prediction.Thus,in this study,we examine the application of the bat algorithm and particle swarm optimization algorithm for the optimization of the CNN model and its hyperparameters,which are employed to solve the steering angle prediction problem.To validate the performance of each hyperparameters’set and architectural parameters’set,we utilized the Udacity steering angle dataset and obtained the best results at the following hyperparameter set:optimizer,Adagrad;learning rate,0.0052;and nonlinear activation function,exponential linear unit.As per our findings,we determined that the deep learning models show better results but require more training epochs and time as compared to shallower ones.Results show the superiority of our approach in optimizing CNNs through metaheuristic algorithms as compared with the manual-tuning approach.Infield testing was also performed using the model trained with the optimal architecture,which we developed using our approach.展开更多
基金The authors would like to acknowledge the support of the Deputy for Research and Innovation,Ministry of Education,Kingdom of Saudi Arabia for this research through a grant(NU/IFC/INT/01/008)under the institutional Funding Committee at Najran University,Kingdom of Saudi Arabia.
文摘Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In autonomous vehicles,imitation-learning-based steering angle prediction is viable due to the visual imagery comprehension of CNNs.In this regard,globally,researchers are currently focusing on the architectural design and optimization of the hyperparameters of CNNs to achieve the best results.Literature has proven the superiority of metaheuristic algorithms over the manual-tuning of CNNs.However,to the best of our knowledge,these techniques are yet to be applied to address the problem of imitationlearning-based steering angle prediction.Thus,in this study,we examine the application of the bat algorithm and particle swarm optimization algorithm for the optimization of the CNN model and its hyperparameters,which are employed to solve the steering angle prediction problem.To validate the performance of each hyperparameters’set and architectural parameters’set,we utilized the Udacity steering angle dataset and obtained the best results at the following hyperparameter set:optimizer,Adagrad;learning rate,0.0052;and nonlinear activation function,exponential linear unit.As per our findings,we determined that the deep learning models show better results but require more training epochs and time as compared to shallower ones.Results show the superiority of our approach in optimizing CNNs through metaheuristic algorithms as compared with the manual-tuning approach.Infield testing was also performed using the model trained with the optimal architecture,which we developed using our approach.