The current paper is mainly devoted for solving centrosymmetric linear systems of equations. Formulae for the determinants of tridiagonal centrosymmetric matrices are obtained explicitly. Two efficient computational a...The current paper is mainly devoted for solving centrosymmetric linear systems of equations. Formulae for the determinants of tridiagonal centrosymmetric matrices are obtained explicitly. Two efficient computational algorithms are established for solving general centrosymmetric linear systems. Based on these algorithms, a MAPLE procedure is written. Some illustrative examples are given.展开更多
Numeric algorithms for solving the linear systems of tridiagonal type have already existed. The well-known Thomas algorithm is an example of such algorithms. The current paper is mainly devoted to constructing symboli...Numeric algorithms for solving the linear systems of tridiagonal type have already existed. The well-known Thomas algorithm is an example of such algorithms. The current paper is mainly devoted to constructing symbolic algorithms for solving tridiagonal linear systems of equations via transformations. The new symbolic algorithms remove the cases where the numeric algorithms fail. The computational cost of these algorithms is given. MAPLE procedures based on these algorithms are presented. Some illustrative examples are given.展开更多
The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of ...The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of the algorithms is obtained. Some illustrative examples are given.展开更多
In the current article we propose a new efficient, reliable and breakdown-free algorithm for solving general opposite-bordered tridiagonal linear systems. An explicit formula for computing the determinant of an opposi...In the current article we propose a new efficient, reliable and breakdown-free algorithm for solving general opposite-bordered tridiagonal linear systems. An explicit formula for computing the determinant of an opposite-bordered tridiagonal matrix is investigated. Some illustrative examples are given.展开更多
文摘The current paper is mainly devoted for solving centrosymmetric linear systems of equations. Formulae for the determinants of tridiagonal centrosymmetric matrices are obtained explicitly. Two efficient computational algorithms are established for solving general centrosymmetric linear systems. Based on these algorithms, a MAPLE procedure is written. Some illustrative examples are given.
文摘Numeric algorithms for solving the linear systems of tridiagonal type have already existed. The well-known Thomas algorithm is an example of such algorithms. The current paper is mainly devoted to constructing symbolic algorithms for solving tridiagonal linear systems of equations via transformations. The new symbolic algorithms remove the cases where the numeric algorithms fail. The computational cost of these algorithms is given. MAPLE procedures based on these algorithms are presented. Some illustrative examples are given.
文摘The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of the algorithms is obtained. Some illustrative examples are given.
文摘In the current article we propose a new efficient, reliable and breakdown-free algorithm for solving general opposite-bordered tridiagonal linear systems. An explicit formula for computing the determinant of an opposite-bordered tridiagonal matrix is investigated. Some illustrative examples are given.