Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the ma...Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field.In addition,it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface.Based on the thickness and symmetry dependences of THz emission,we experimentally distinguish between the two major contributions:ultrafast demagnetization and the anomalous Hall effect.Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD...Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.展开更多
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act...Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.展开更多
Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))n...Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production.展开更多
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ...Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.展开更多
Integrated sensing and communication(ISAC)is anticipated to play a pivotal role in realizing the ability to sense,control,and optimize wireless environments,as well as providing ubiquitous connectivity with ultra-high...Integrated sensing and communication(ISAC)is anticipated to play a pivotal role in realizing the ability to sense,control,and optimize wireless environments,as well as providing ubiquitous connectivity with ultra-high throughput and reliability,and ultra-low latency for future wireless networks.Therefore,it can meet the requirements of mass data transmission,centimeter-level localization,and highly fine-grained environmental sensing for new applications,such as extended reality,holographic communication,autonomous driving,smart healthcare,and intelligent industry.The technology of ISAC deviates from traditional pattern of isolated design for communication and sensing.It can efficiently utilize wireless resources and potentially achieve mutual benefits by combining sensing and communication systems.The ultimate goal of the ISAC system has two aspects.On the one hand,the wireless communication system gains new functions。展开更多
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi...Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.展开更多
Inverted perovskite solar cells(PSCs)have attracted interest due to their simple fabrication,long-term stability,and small hysteresis[1-3].It is noteworthy that the quality of the hole-transport layer(HTL)largely dete...Inverted perovskite solar cells(PSCs)have attracted interest due to their simple fabrication,long-term stability,and small hysteresis[1-3].It is noteworthy that the quality of the hole-transport layer(HTL)largely determines the device performance.Nickel oxide(NiO_(x))has been paid great attention as a hole-transport material in PSCs because of its natural p-type property,low cost,good stability,and high transmittance[4,5].展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.61988102,62322115,61975110,and 62335012)+3 种基金the 111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant No.22JC1400200)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field.In addition,it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface.Based on the thickness and symmetry dependences of THz emission,we experimentally distinguish between the two major contributions:ultrafast demagnetization and the anomalous Hall effect.Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金supported by the National Natural Science Foundation of China(42003059)State Key Laboratory of Coal Mining and Clean Utilization(2021-CMCU-KF009)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC003)。
文摘Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.
基金financially supported by the National Key Research and Development Program of China(2022YFD190160304)Natural Science Foundation of Sichuan Province(2022NSFSC0013)+1 种基金Sichuan Maize Innovation Team Construction Project(SCCXTD-2022-02)National Key Research and Development Program of China(2018YFD0301206)。
文摘Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.
基金financially supported by the National Natural Science Foundation of China(22272131,2221154071221972111)+4 种基金the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1411)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2019073)Chongqing Doctoral Research and Innovation Project(CYB21106)Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies
文摘Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production.
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
文摘Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.
文摘Integrated sensing and communication(ISAC)is anticipated to play a pivotal role in realizing the ability to sense,control,and optimize wireless environments,as well as providing ubiquitous connectivity with ultra-high throughput and reliability,and ultra-low latency for future wireless networks.Therefore,it can meet the requirements of mass data transmission,centimeter-level localization,and highly fine-grained environmental sensing for new applications,such as extended reality,holographic communication,autonomous driving,smart healthcare,and intelligent industry.The technology of ISAC deviates from traditional pattern of isolated design for communication and sensing.It can efficiently utilize wireless resources and potentially achieve mutual benefits by combining sensing and communication systems.The ultimate goal of the ISAC system has two aspects.On the one hand,the wireless communication system gains new functions。
基金Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302)Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012)。
文摘Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
基金This work was supported by the National Natural Science Foundation of China(62004058 and U21A2076)Natural Science Foundation of Hebei Province(F2020202022)+5 种基金State Key Laboratory of Reliability and Intelligence of Electrical Equipment(EERI_PI20200005)S&T Program of Hebei(215676146H and 225676163GH)Hebei Graduate Innovation Funding Project(CXZZBS2023037 and CXZZSS2023026)L.Ding thanks the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(21961160720).
文摘Inverted perovskite solar cells(PSCs)have attracted interest due to their simple fabrication,long-term stability,and small hysteresis[1-3].It is noteworthy that the quality of the hole-transport layer(HTL)largely determines the device performance.Nickel oxide(NiO_(x))has been paid great attention as a hole-transport material in PSCs because of its natural p-type property,low cost,good stability,and high transmittance[4,5].