Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compare...Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.展开更多
This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k)...This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k) between particles,the interaction potential between the micro/nano curved surface and the in-surface-particle is derived.The following results are shown:(a) For an even number of exponents in the pair potential,the interaction potential between the micro/nano curved surface and the in-surface-particle can be expressed as a unified function of the mean curvature and Gaussian curvature of the curved surface;(b) the curvatures and the gradients of curvatures of the micro/nano curved surface are the essential factors that dominate the driving force acting on the particle.展开更多
We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are w...We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.展开更多
Based on the recent research progress in fractal super fibers,the growth kinematics(or pattern kinematics) of(6+1) -circle fractal super fiber with snowflake-like cross section(abbreviated as"fractal super snowfl...Based on the recent research progress in fractal super fibers,the growth kinematics(or pattern kinematics) of(6+1) -circle fractal super fiber with snowflake-like cross section(abbreviated as"fractal super snowflake") is explored.The following results are obtained.(1) The fractal super snowflake obeys simply the straight-line growth mode.(2) At a given movement,the growth speed of the snowflake distributes uniformly in space.At a given point in space,the growth speed decreases along with the time.(3) The growth kinematics of the fractal super snowflake is intensively influenced by the self-similar ratio:If and only if the self-similar ratio is equal to 1/3,the macro speed equals to the micro speed,and the macro density equals to the micro density.If the self-similar ratio is smaller than 1/3,the micro speed is larger than the macro speed,and the micro density is larger than the macro density.If the self-similar ratio is larger than 1/3,the macro speed is larger than the micro speed,and the macro density is larger than the micro density.These results provide references for us to understand the complicated fractal growing phenomena in nature.展开更多
Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state...Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state,the network of three-way lipid nanotube junctions is equivalent to a SMT.Besides,an arbitrary (usually non-equilibrium) network of lipid nanotube junctions may fission into a SMT through diffusions and dynamic self-organizations of lipid molecules.Potential applications of the law to the micromanipulations of LNNs are presented.展开更多
文摘Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.
基金supported by the National Natural Sciences Foundation of China (Grant Nos.11072125 and 10872114)the Natural Science Foundation of Jiangsu province (Grant No. SBK201140044)
文摘This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k) between particles,the interaction potential between the micro/nano curved surface and the in-surface-particle is derived.The following results are shown:(a) For an even number of exponents in the pair potential,the interaction potential between the micro/nano curved surface and the in-surface-particle can be expressed as a unified function of the mean curvature and Gaussian curvature of the curved surface;(b) the curvatures and the gradients of curvatures of the micro/nano curved surface are the essential factors that dominate the driving force acting on the particle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072125 and 10872114)the Natural Science Foundation of Jiangsu Province (Grant No. SBK201140044)
文摘We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.
基金supported by the National Natural Science Foundation of China(Grant No.10872114)Natural Science Foundation of Jiangsu Province(Grant No.BK2008370)
文摘Based on the recent research progress in fractal super fibers,the growth kinematics(or pattern kinematics) of(6+1) -circle fractal super fiber with snowflake-like cross section(abbreviated as"fractal super snowflake") is explored.The following results are obtained.(1) The fractal super snowflake obeys simply the straight-line growth mode.(2) At a given movement,the growth speed of the snowflake distributes uniformly in space.At a given point in space,the growth speed decreases along with the time.(3) The growth kinematics of the fractal super snowflake is intensively influenced by the self-similar ratio:If and only if the self-similar ratio is equal to 1/3,the macro speed equals to the micro speed,and the macro density equals to the micro density.If the self-similar ratio is smaller than 1/3,the micro speed is larger than the macro speed,and the micro density is larger than the macro density.If the self-similar ratio is larger than 1/3,the macro speed is larger than the micro speed,and the macro density is larger than the micro density.These results provide references for us to understand the complicated fractal growing phenomena in nature.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10872114,11072125)the Natural Science Foundation of Jiangsu Province(Grant No. BK2008370)
文摘Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state,the network of three-way lipid nanotube junctions is equivalent to a SMT.Besides,an arbitrary (usually non-equilibrium) network of lipid nanotube junctions may fission into a SMT through diffusions and dynamic self-organizations of lipid molecules.Potential applications of the law to the micromanipulations of LNNs are presented.