期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites
1
作者 En-Yang liu Si-Rong Yu +3 位作者 Ming Yuan fan-guo li Yan Zhao Wei Xiong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第9期953-962,共10页
The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructur... The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructures and damping capacities of fly ash cenosphere/AZ91D composites were investigated. With the increase in isothermal temperature or holding time, the small liquid droplets within grains increased in size but decreased in quantity. The average size and shape factor of Mg2Si particles increased with the rise of isothermal temperature. The damping capacities of the composites were improved by isothermal heat treatment. At room temperature, the composites after heat treatment at 520 and 550 ℃ had a higher damping capacity due to interface damping when the strain amplitude was lower than about 8.8 × 10^-5, and the composite after heat treatment at 580 ℃ had a better damping capacity because of the dislocation damping under the condition of high strain amplitude. The damping capacities of the composites increased with the rise of the test temper- ature, and the damping mechanisms varied depending on different test temperatures. The interface damping played an important role when the test temperature was below about 100 ℃, and the dislocation damping and grain boundary damping took effect with the rise of test temperature. 展开更多
关键词 Fly ash cenosphere Magnesium matrix composite Semi-solid isothermal heat treatment Microstructuralevolution Damping capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部