In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric frac...In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric fraction and asphaltene is great. The interfacial pressure of fractions increases in strongly basic conditions. The ζ (-80mv) of acid fraction is the largest under basic conditions (pH=11-12), with the result to show that the interfacial activity of the acid fraction is superior to that of other fractions. The results of model emulsions show that strongly basic conolition (pH≥11) is beneficial to oil-in- water emulsion stability. The interfacial activity of acid fraction and asphaltene is superior to that of other crude fractions.展开更多
文摘In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric fraction and asphaltene is great. The interfacial pressure of fractions increases in strongly basic conditions. The ζ (-80mv) of acid fraction is the largest under basic conditions (pH=11-12), with the result to show that the interfacial activity of the acid fraction is superior to that of other fractions. The results of model emulsions show that strongly basic conolition (pH≥11) is beneficial to oil-in- water emulsion stability. The interfacial activity of acid fraction and asphaltene is superior to that of other crude fractions.